
تعداد نشریات | 163 |
تعداد شمارهها | 6,760 |
تعداد مقالات | 72,813 |
تعداد مشاهده مقاله | 131,598,160 |
تعداد دریافت فایل اصل مقاله | 103,396,588 |
A Comprehensive Review of Ultrasonic-Assisted Oil Recovery: Principles, Applications, and Future Prospects | ||
Journal of Chemical and Petroleum Engineering | ||
دوره 59، شماره 1، شهریور 2025، صفحه 81-113 اصل مقاله (688.97 K) | ||
نوع مقاله: Review paper | ||
شناسه دیجیتال (DOI): 10.22059/jchpe.2024.375066.1507 | ||
نویسندگان | ||
MohammadAmin Ehsani1؛ Mohammadreza Akbari* 2؛ Yasin Khalili2 | ||
1Department of Petroleum Engineering, Amirkabir University of Technology, Tehran, Iran | ||
2Department of Petroleum Engineering, Amirkabir University of Technology, Tehran, Iran. | ||
چکیده | ||
Ultrasonic waves have emerged as a transformative technology in enhanced oil recovery (EOR), offering solutions to critical challenges such as low recovery efficiency, reservoir heterogeneity, and high operational costs. This review explores the principles, mechanisms, and applications of ultrasonic waves in oil recovery, highlighting their ability to reduce interfacial tension, improve fluid mobility, and enhance reservoir permeability. Key findings from case studies indicate that ultrasonic-assisted EOR can increase recovery rates by up to 60%, reduce chemical dependency, and lower environmental impact compared to conventional methods. The primary objective of this review is to synthesize existing research on ultrasonic wave applications in EOR, identify gaps in knowledge, and propose pathways for future advancements. Methodologies analyzed include laboratory-scale experiments, field applications, and modeling studies that evaluate the effects of ultrasonic parameters such as frequency, amplitude, and power density on recovery performance. By providing a comprehensive understanding of ultrasonic-assisted oil recovery, this study underscores its potential to revolutionize hydrocarbon production, especially in challenging reservoirs. Future research directions include optimizing ultrasonic parameters for specific reservoir conditions and integrating this technology with hybrid recovery methods for enhanced efficiency and scalability. | ||
کلیدواژهها | ||
Acoustic Streaming؛ Cavitation Effects؛ Enhanced Oil Recovery؛ Permeability Enhancement؛ Sustainable EOR؛ Ultrasonic Waves | ||
مراجع | ||
[1] Tahmasebi-Boldaji, R. (2023). The Effect of Ultrasonic Waves on Crude Oil Recovery. In Topics on Oil and Gas. IntechOpen. DOI: 10.5772/intechopen.106494.
[2] Denysiuk, I., Skurativska, I., Hubar, I., Saliuk-Kravchenko, O., & Taraduda, D. (2024). Wave Methods for Oil Extraction Enhancing: Theoretical Support, Safety Issues, and Prospects. In Systems, Decision and Control in Energy VI: Volume I: Energy Informatics and Transport (pp. 329-347). Cham: Springer Nature Switzerland. ISBN: 978-3-031-68372-5.
[3] Shaker, D. H., Ibrahim, R. I., & Oudah, M. K. (2024). Conventional and Unconventional Enhanced Oil Recovery Development Trend of Ultrasound Application in EOR. Iraqi Journal of Oil and Gas Research (IJOGR), 4(1), 76-96. DOI: 10.55699/ijogr.2024.0401.1065.
[4] Liu, T., Hou, C., Li, H., Dahlen, P., & Guo, Y. (2024). The impact of solid particles and oil characteristics on the separation efficacy of oil sludge ultrasonic treatment. Chemical Engineering and Processing-Process Intensification, 205, 109965. DOI: https://doi.org/10.1016/j.cep.2024.109965.
[5] Kairgeldina, L. K., & Sarsenbekuly, B. (2024). Alternative Methods of thermal Oil Recovery: A Review. Kazakhstan journal for oil & gas industry, 6(1), 50-63. DOI: https://doi.org/10.54859/kjogi108692.
[6] Taherynia, M. H., Fatemi Aghda, S. M., & Fahimifar, A. (2023). Effects of ultrasonic waves on water imbibition into oil-wet carbonate reservoirs (a case study). Petroleum Science and Technology, 41(1), 14- 29. DOI: https://doi.org/10.1080/10916466.2021.2024226.
[7] Dengaev, A. V., Kayumov, A. A., Getalov, A. A., Aliev, F. A., Baimukhametov, G. F., Sargin, B. V., ... & Vakhin, A. V. (2023). Chemical Viscosity Reduction of Heavy Oil by Multi-Frequency Ultrasonic Waves with the Main Harmonics of 20–60 kHz. Fluids, 8(4), 136. DOI: https://doi.org/10.3390/fluids8040136.
[8] Otumudia, E., Hamidi, H., Jadhawar, P., & Wu, K. (2022). The utilization of ultrasound for improving oil recovery and formation damage remediation in petroleum reservoirs: review of most recent researches. Energies, 15(13), 4906. DOI: https://doi.org/10.3390/en15134906.
[9] Agi, A., Junin, R., Jaafar, M. Z., Sidek, M. A., Yakasai, F., Gbadamosi, A., & Oseh, J. (2022). Laboratory evaluation to field application of ultrasound: A state-of-the-art review on the effect of ultrasonication on enhanced oil recovery mechanisms. Journal of Industrial and Engineering Chemistry, 110, 100-119. DOI: https://doi.org/10.1016/j.jiec.2022.03.030.
[10] Razavifar, M., Qajar, J., & Riazi, M. (2022). Experimental study on pore-scale mechanisms of ultrasonic-assisted heavy oil recovery with solvent effects. Journal of Petroleum Science and Engineering, 214, 110553. DOI: https://doi.org/10.1016/j.petrol.2022.110553.
[11] Feng, J., Yan, T., Cao, Y., & Sun, S. (2022). Ultrasonic-assisted rock-breaking technology and oil and gas drilling applications: A review. Energies, 15(22), 8394. DOI: https://doi.org/10.3390/en15228394.
[12] Adil, M., & Onaizi, S. A. (2022). Pickering nanoemulsions and their mechanisms in enhancing oil recovery: A comprehensive review. Fuel, 319, 123667. DOI: https://doi.org/10.1016/j.fuel.2022.123667.
[13] Agi, A., Junin, R., Jaafar, M. Z., Amin, N. A. S., Sidek, M. A., Nyakuma, B. B., ... & Azli, N. B. (2022). Ultrasound-assisted nanofluid flooding to enhance heavy oil recovery in a simulated porous media. Arabian Journal of Chemistry, 15(5), 103784. DOI: https://doi.org/10.1016/j.arabjc.2022.103784.
[14] Dargi, M., Khamehchi, E., & Mahdavi Kalatehno, J. (2023). Optimizing acidizing design and effectiveness assessment with machine learning for predicting post-acidizing permeability. Scientific Reports, 13(1), 11851. DOI: 10.1038/s41598-023-39156-9. PMID: 37481625; PMCID: PMC10363159.
[15] Norouzpour, M., Azdarpour, A., Santos, R. M., Esfandiarian, A., Nabipour, M., Mohammadian, E., ... & Keshavarz, A. (2023). Comparative static and dynamic analyses of solvents for removal of asphaltene and wax deposits above-and below-surface at an Iranian carbonate oil field. ACS omega, 8(28), 25525- 25537. DOI: 10.1021/acsomega.3c03149. PMID: 37483249; PMCID: PMC10357422.
[16] Gong, X., Ma, X., Liu, Y., & Li, G. (2022). Advances in hydraulic fracture propagation research in shale reservoirs. Minerals, 12(11), 1438. DOI: https://doi.org/10.3390/min12111438.
[17] Nixon, S. L., Plominsky, A. M., Hernandez-Becerra, N., Boothman, C., & Bartlett, D. H. (2023). Microbial communities in freshwater used for hydraulic fracturing cannot withstand the high temperatures and pressures of fractured shales. Access Microbiology, 5(4), 000515-v3. DOI: 10.1099/acmi.0.000515.v3. PMID: 37223063; PMCID: PMC10202394.
[18] Benhamou, J., Jami, M., Mezrhab, A., Henry, D., & Botton, V. (2023). Numerical simulation study of acoustic waves propagation and streaming using MRT-lattice Boltzmann method. International Journal for Computational Methods in Engineering Science and Mechanics, 24(1), 62-75. DOI: https://doi.org/10.1080/15502287.2022.2050844.
[19] Liu, P., Liu, A., Liu, S., & Qi, L. (2022). Experimental evaluation of ultrasound treatment induced coal's pore structure and gas desorption behavior alterations. Fuel, 307, 121855. DOI: https://doi.org/10.1016/j.fuel.2021.121855.
[20] Stringfellow, W. T., Camarillo, M. K., Domen, J. K., & Shonkoff, S. B. (2017). Comparison of chemical-use between hydraulic fracturing, acidizing, and routine oil and gas development. PLoS One, 12(4), e0175344. DOI: 10.1371/journal.pone.0175344. PMID: 28422971; PMCID: PMC5396893.
[21] Li, Y., Zhou, F., Li, B., Cheng, T., Zhang, M., Wang, Q., ... & Liang, T. (2022). Optimization of fracturing fluid and retarded acid for stimulating tight naturally fractured bedrock reservoirs. ACS omega, 7(29), 25122-25131. DOI: 10.1021/acsomega.2c01612. PMID: 35910177; PMCID: PMC9330227.
[22] Khalili, Y., Rafiei, Y., & Sharifi, M. (2022). Reservoir Characterization by Applying Pressure Transient Analysis on Data Obtained from Electrical Submersible Pumps. Journal of Petroleum Research, 32(126), 110-125. DOI: 10.22078/pr.2022.4816.3158.
[23] Meribout, M. (2018). On using ultrasonic-assisted enhanced oil recovery (EOR): recent practical achievements and prospects. IEEE Access, 6, 51110-51118.
[24] Shields IV, C. W., Cruz, D. F., Ohiri, K. A., Yellen, B. B., & Lopez, G. P. (2016). Fabrication and operation of acoustofluidic devices supporting bulk acoustic standing waves for sheathless focusing of particles. Journal of Visualized Experiments: JoVE, (109), 53861. DOI: 10.3791/53861. PMID: 27022681; PMCID: PMC4828217.
[25] Hamidi, H., Haddad, A. S., Otumudia, E. W., Rafati, R., Mohammadian, E., Azdarpour, A., ... & Tanujaya, E. (2021). Recent applications of ultrasonic waves in improved oil recovery: A review of techniques and results. Ultrasonics, 110, 106288. DOI: https://doi.org/10.1016/j.ultras.2020.106288.
[26] Naderi, K., & Babadagli, T. (2010). Influence of intensity and frequency of ultrasonic waves on capillary interaction and oil recovery from different rock types. Ultrasonics sonochemistry, 17(3), 500-508. DOI: https://doi.org/10.1016/j.ultsonch.2009.10.022.
[27] Abdulfatah, H. K. (2018, September). Application of ultrasonic waves in enhancing oil recovery in secondary recovery phase. In SPE Annual Technical Conference and Exhibition? (p. D023S099R006). SPE. DOI: https://doi.org/10.2118/194031-STU.
[28] Li, X., Pu, C., Chen, X., Huang, F., & Zheng, H. (2021). Study on frequency optimization and mechanism of ultrasonic waves assisting water flooding in low-permeability reservoirs. Ultrasonics Sonochemistry, 70, 105291. DOI: https://doi.org/10.1016/j.ultsonch.2020.105291.
[29] Hamidi, H., Rafati, R., Junin, R. B., & Manan, M. A. (2012). A role of ultrasonic frequency and power on oil mobilization in underground petroleum reservoirs. Journal of Petroleum Exploration and Production Technology, 2, 29-36. DOI: https://doi.org/10.1007/s13202-012-0018-x.
[30] Alhomadhi, E., Amro, M., & Almobarky, M. (2014). Experimental application of ultrasound waves to improved oil recovery during waterflooding. Journal of King Saud University-Engineering Sciences, 26(1), 103-110. DOI: https://doi.org/10.1016/j.jksues.2013.04.002.
[31] Ragab, A. M., & Fouad Snosy, M. (2015, October). The effect of ultrasonic waves of EOR on the relative permeability curves. In SPE Kuwait Oil and Gas Show and Conference (pp. SPE-175410). SPE. DOI: https://doi.org/10.2118/175410-MS.
[32] Agi, A., Junin, R., & Chong, A. S. (2018). Intermittent ultrasonic wave to improve oil recovery. Journal of Petroleum Science and Engineering, 166, 577-591. DOI: https://doi.org/10.1016/j.petrol.2018.03.097.
[33] Dehshibi, R. R., Mohebbi, A., Riazi, M., & Niakousari, M. (2018). Experimental investigation on the effect of ultrasonic waves on reducing asphaltene deposition and improving oil recovery under temperature control. Ultrasonics Sonochemistry, 45, 204-212. DOI: https://doi.org/10.1016/j.ultsonch.2018.03.023.
[34] Khalili, Y., Hashemizadeh, A., & Yasemi, S. (2022). Study the efficiency of different polymers used in polymer injection (flooding) operations in enhanced oil recovery of heavy oil reservoirs. Basparesh, 12(1), 14-24. DOI: 10.22063/basparesh.2021.2857.1545.
[35] Shafiai, S. H., & Gohari, A. (2020). Conventional and electrical EOR review: the development trend of ultrasonic application in EOR. Journal of Petroleum Exploration and Production Technology, 10(7), 2923-2945. DOI: https://doi.org/10.1007/s13202-020-00929-x.
[36] Mohsin, M., & Meribout, M. (2015). An extended model for ultrasonic-based enhanced oil recovery with experimental validation. Ultrasonics sonochemistry, 23, 413-423. DOI: https://doi.org/10.1016/j.ultsonch.2014.08.007.
[37] Mohammadian, E., Junin, R., Rahmani, O., & Idris, A. K. (2013). Effects of sonication radiation on oil recovery by ultrasonic waves stimulated water-flooding. Ultrasonics, 53(2), 607-614. DOI: https://doi.org/10.1016/j.ultras.2012.10.006.
[38] Hamidi, H., Mohammadian, E., Rafati, R., Azdarpour, A., & Ing, J. (2015). The effect of ultrasonic waves on the phase behavior of a surfactant–brine–oil system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 482, 27-33. DOI: https://doi.org/10.1016/j.colsurfa.2015.04.009.
[39] Hiedemann, E. A. (1954). Metallurgical effects of ultrasonic waves. the Journal of the Acoustical Society of America, 26(5), 831-842. DOI: https://doi.org/10.1121/1.1907426.
[40] Hamidi, H., Mohammadian, E., Junin, R., Rafati, R., Azdarpour, A., Junid, M., & Savory, R. M. (2014). The effect of ultrasonic waves on oil viscosity. Petroleum Science and Technology, 32(19), 2387-2395. DOI: https://doi.org/10.1080/10916466.2013.831873.
[41] Fox, F. E., Herzfeld, K. F., & Rock, G. D. (1946). The effect of ultrasonic waves on the conductivity of salt solutions. Physical review, 70(5-6), 329. https://doi.org/10.1103/PhysRev.70.329.
[42] Abo-Qudais, S. A. (2005). Effect of concrete mixing parameters on propagation of ultrasonic waves. Construction and building materials, 19(4), 257-263. DOI: https://doi.org/10.1016/j.conbuildmat.2004.07.022.
[43] Nazari, M., & Eteghadipour, M. (2017). Impacts of ultrasonic waves on seeds: a mini- review. Agricultural Research & Technology: Open Access Journal, 6(3), 1-6. ISSN: 2471-6774.
[44] Yu, D., Liu, B., & Wang, B. (2012). The effect of ultrasonic waves on pure and degassed water nucleation. Ultrasonics sonochemistry, 19(3), 459-463. DOI: https://doi.org/10.1016/j.ultsonch.2011.08.005.
[45] Yasemi, S., Khalili, Y., Sanati, A., & Bagheri, M. (2023). Carbon capture and storage: Application in the oil and gas industry. Sustainability, 15(19), 14486. DOI: https://doi.org/10.3390/su151914486.
[46] Ahmadi, M., & Chen, Z. (2020). Challenges and future of chemical assisted heavy oil recovery processes. Advances in colloid and interface science, 275, 102081. DOI: https://doi.org/10.1016/j.cis.2019.102081.
[47] Malozyomov, B. V., Martyushev, N. V., Kukartsev, V. V., Tynchenko, V. S., Bukhtoyarov, V. V., Wu, X., ... & Kukartsev, V. A. (2023). Overview of methods for enhanced oil recovery from conventional and unconventional reservoirs. Energies, 16(13), 4907. DOI: https://doi.org/10.3390/en16134907.
[48] Abuhasel, K., Kchaou, M., Alquraish, M., Munusamy, Y., & Jeng, Y. T. (2021). Oily wastewater treatment: Overview of conventional and modern methods, challenges, and future opportunities. Water, 13(7), 980. DOI: https://doi.org/10.3390/w13070980.
[49] Pal, S., Mushtaq, M., Banat, F., & Al Sumaiti, A. M. (2018). Review of surfactant-assisted chemical enhanced oil recovery for carbonate reservoirs: challenges and future perspectives. Petroleum Science, 15, 77-102. DOI: https://doi.org/10.1007/s12182-017-0198-6.
[50] Mullakaev, M. S., Abramov, V. O., & Abramova, A. V. (2015). Development of ultrasonic equipment and technology for sound stimulation and enhanced oil recovery. Journal of petroleum science and engineering, 125, 201-208. DOI: https://doi.org/10.1016/j.petrol.2014.10.024.
[51] Li, P., Ma, C., Chen, Z., Wang, H., Wang, Y., & Bai, H. (2023). A Review: Study on the Enhancement Mechanism of Heat and Moisture Transfer in Deformable Porous Media. Processes, 11(9), 2699. DOI: https://doi.org/10.3390/pr11092699.
[52] Khasi, S., Fayazi, A., & Kantzas, A. (2021). Effects of acoustic stimulation on fluid flow in porous media. Energy & Fuels, 35(21), 17580-17601. DOI: https://doi.org/10.1021/acs.energyfuels.1c02631.
[53] Khasi, S. (2023). Acoustically Assisted Displacements in Porous Media. DOI: https://dx.doi.org/10.11575/PRISM/dspace/41275.
[54] Dengaev, A. V., Khelkhal, M. A., Getalov, A. A., Baimukhametov, G. F., Kayumov, A. A., Vakhin, A. V., & Gafurov, M. R. (2023). Innovations in Oil Processing: Chemical Transformation of Oil Components through Ultrasound Assistance. Fluids, 8(4), 108. DOI: https://doi.org/10.3390/fluids8040108.
[55] Rehman, M. M., & Meribout, M. (2012). Conventional versus electrical enhanced oil recovery: a review. Journal of Petroleum Exploration and Production Technology, 2, 169-179. DOI: https://doi.org/10.1007/s13202-012-0035-9.
[56] Hamida, T., & Babadagli, T. (2007). Analysis of capillary interaction and oil recovery under ultrasonic waves. Transport in porous media, 70, 231-255. DOI: https://doi.org/10.1007/s11242-006-9097-9.
[57] Wang, J., Lai, Y., Wang, X., & Ji, H. (2024). Advances in ultrasonic oily sludge treatment: mechanisms, industrial applications, and integration with combined treatment technologies. Environmental Science and Pollution Research, 31(10), 14466-14483. DOI: https://doi.org/10.1007/s11356-024-32089-4.
[58] Wang, Z., & Gu, S. (2018). State-of-the-art on the development of ultrasonic equipment and key problems of ultrasonic oil prudction technique for EOR in China. Renewable and Sustainable Energy Reviews, 82, 2401-2407. DOI: https://doi.org/10.1016/j.rser.2017.08.089.
[59] Taheri-Shakib, J., Shekarifard, A., & Naderi, H. (2017). The experimental investigation of effect of microwave and ultrasonic waves on the key characteristics of heavy crude oil. Journal of analytical and applied pyrolysis, 128, 92-101. DOI: https://doi.org/10.1016/j.jaap.2017.10.021.
[60] Naderi, K., & Babadagli, T. (2008, October). Effect of ultrasonic intensity and frequency on oil/heavy- oil recovery from different wettability rocks. In SPE International Thermal Operations and Heavy Oil Symposium (pp. SPE-117324). SPE. DOI: https://doi.org/10.2118/117324-MS.
[61] Luo, X., Gong, H., He, Z., Zhang, P., & He, L. (2021). Recent advances in applications of power ultrasound for petroleum industry. Ultrasonics Sonochemistry, 70, 105337. DOI: https://doi.org/10.1016/j.ultsonch.2020.105337.
[62] Hamida, T., & Babadagli, T. (2005, October). Effects of ultrasonic waves on immiscible and miscible displacement in porous media. In SPE Annual Technical Conference and Exhibition? (pp. SPE-95327). SPE. DOI: https://doi.org/10.2118/95327-MS.
[63] Amro, M. M., Al-Mobarky, M. A., & Al-Homadhi, E. S. (2007, March). Improved oil recovery by application of ultrasound waves to waterflooding. In SPE middle east oil and gas show and conference (pp. SPE-105370). SPE. DOI: https://doi.org/10.2118/105370-MS.
[64] Arabzadeh, H., & Amani, M. (2017). Application of a novel ultrasonic technology to improve oil recovery with an environmental viewpoint. J Pet Environ Biotechnol, 8(02), 1-5. DOI: 10.4172/2157-7463.1000323.
[65] Wang, Z., Fang, R., & Guo, H. (2020). Advances in ultrasonic production units for enhanced oil recovery in China. Ultrasonics sonochemistry, 60, 104791. DOI: https://doi.org/10.1016/j.ultsonch.2019.104791.
[66] Naderi, K., & Babadagli, T. (2008). Clarifications on oil/heavy oil recovery under ultrasonic radiation through core and 2D visualization experiments. Journal of Canadian Petroleum Technology, 47(11). DOI: https://doi.org/10.2118/08-11-56.
[67] Wang, Z., & Xu, Y. (2015). Review on application of the recent new high-power ultrasonic transducers in enhanced oil recovery field in China. Energy, 89, 259-267. DOI: https://doi.org/10.1016/j.energy.2015.07.077.
[68] Abramov, V. O., Mullakaev, M. S., Abramova, A. V., Esipov, I. B., & Mason, T. J. (2013). Ultrasonic technology for enhanced oil recovery from failing oil wells and the equipment for its implemention. Ultrasonics sonochemistry, 20(5), 1289-1295. DOI: https://doi.org/10.1016/j.ultsonch.2013.03.004.
[69] Mohammadian, E., Shirazi, M. A., & Idris, A. K. (2011, September). Enhancing oil recovery through application of ultrasonic assisted waterflooding. In SPE Asia Pacific Oil and Gas Conference and Exhibition (pp. SPE-145014). SPE. DOI: https://doi.org/10.2118/145014-MS.
[70] Juliano, P., Swiergon, P., Mawson, R., Knoerzer, K., & Augustin, M. A. (2013). Application of ultrasound for oil separation and recovery of palm oil. Journal of the American Oil Chemists' Society, 90(4), 579-588. DOI: https://doi.org/10.1007/s11746-012-2191-y.
[71] Zhang, H., Gao, C., Zhang, H., Song, N., & Cao, Q. (2024). Revisiting the Application of Ultrasonic Technology for Enhanced Oil Recovery: Mechanisms and Recent Advancements. Energies, 17(14), 3517. DOI: https://doi.org/10.3390/en17143517.
[72] Hamida, T., & Babadagli, T. (2005, April). Effect of ultrasonic waves on the capillary-imbibition recovery of oil. In SPE Asia Pacific Oil and Gas Conference and Exhibition (pp. SPE-92124). SPE. DOI: https://doi.org/10.2118/92124-MS.
[73] Gao, Y., Ding, R., Wu, S., Wu, Y., Zhang, Y., & Yang, M. (2015). Influence of ultrasonic waves on removing different oil components from oily sludge. Environmental technology, 36(14), 1771-1775. DOI: https://doi.org/10.1080/09593330.2015.1010594.
[74] Wang, Z., Xu, Y., & Gu, Y. (2015). Lithium niobate ultrasonic transducer design for enhanced oil recovery. Ultrasonics Sonochemistry, 27, 171-177. DOI: https://doi.org/10.1016/j.ultsonch.2015.05.017.
[75] Khalili, Y., & Ahmadi, M. (2023). Reservoir modeling & simulation: Advancements, challenges, and future perspectives. Journal of Chemical and Petroleum Engineering, 57(2), 343-364. DOI: 10.22059/jchpe.2023.363392.1447.
[76] Elwegaa, K., Emadi, H., Soliman, M., Gamadi, T., & Elsharafi, M. (2019). Improving oil recovery from shale oil reservoirs using cyclic cold carbon dioxide injection–An experimental study. Fuel, 254, 115586. DOI: https://doi.org/10.1016/j.fuel.2019.05.169.
[77] Huang, X., Zhou, C., Suo, Q., Zhang, L., & Wang, S. (2018). Experimental study on viscosity reduction for residual oil by ultrasonic. Ultrasonics Sonochemistry, 41, 661-669. DOI: https://doi.org/10.1016/j.ultsonch.2017.09.021.
[78] Saravanan, A., Kumar, P. S., Vardhan, K. H., Jeevanantham, S., Karishma, S. B., Yaashikaa, P. R., & Vellaichamy, P. (2020). A review on systematic approach for microbial enhanced oil recovery technologies: Opportunities and challenges. Journal of Cleaner Production, 258, 120777. DOI: https://doi.org/10.1016/j.jclepro.2020.120777.
[79] Mullakaev, M. S., Abramov, V. O., & Abramova, A. V. (2017). Ultrasonic piezoceramic module and technology for stimulating low-productivity wells. Journal of Petroleum Science and Engineering, 158, 529-534. DOI: https://doi.org/10.1016/j.petrol.2017.08.067.
[80] Samanta, A. S., & Arora, R. (2018). Structural analysis of horn used in ultrasonic enhanced oil recovery. Indian Journal of Science and Technology, 11(28), 1-10. DOI: 10.17485/ijst/2018/v11i28/130781, July 2018.
[81] Mullakaev, M. S., Saltykov, Y. A., Saltykov, A. A., & Mullakaev, R. M. (2023, October). Experience of Ultrasonic Technology Application in the Samotlor Field Wells (Western Syberia). In Conference on Physical and Mathematical Modeling of Earth and Environment Processes (pp. 191-196). Cham: Springer Nature Switzerland. DOI: https://doi.org/10.1007/978-3-031-54589-4_20.
[82] Skadsem, H. J., Gardner, D., Jiménez, K. B., Govil, A., Palacio, G. O., & Delabroy, L. (2021). Study of ultrasonic logs and seepage potential on sandwich sections retrieved from a north sea production well. SPE Drilling & Completion, 36(04), 976-990. DOI: https://doi.org/10.2118/206727-PA.
[83] Adenutsi, C. D., Turkson, J. N., Wang, L., Zhao, G., Zhang, T., Quaye, J. A., ... & Sokama-Neuyam, Y. A. (2023). Review on Potential Application of Saponin-Based Natural Surfactants for Green Chemical Enhanced Oil Recovery: Perspectives and Progresses. Energy & Fuels, 37(13), 8781-8823. DOI: https://doi.org/10.1021/acs.energyfuels.3c00627.
[84] Kamkar, A., Hosseini, H., Norouzi-Apourvari, S., & Schaffie, M. (2021). Insight into the Synergic Effect of Ultrasonic Waves, SDS Surfactant, and Silica Nanoparticles on Wettability Alteration of Carbonate Rocks. Arabian Journal for Science and Engineering, 1-14. DOI: https://doi.org/10.1007/s13369-021-06356-2.
[85] Jeong, C., Kallivokas, L. F., Huh, C., & Lake, L. W. (2011, October). Maximization of oil mobility within a hydrocarbon reservoir for elastic wave-based enhanced oil recovery. In SPE Annual Technical Conference and Exhibition? (pp. SPE-147150). SPE. DOI: https://doi.org/10.2118/147150-MS.
[86] Deng, X., Tariq, Z., Murtaza, M., Patil, S., Mahmoud, M., & Kamal, M. S. (2021). Relative contribution of wettability Alteration and interfacial tension reduction in EOR: A critical review. Journal of Molecular Liquids, 325, 115175. DOI: https://doi.org/10.1016/j.molliq.2020.115175.
[87] Zhao, L., Yuan, H., Yang, J., Han, D. H., Geng, J., Zhou, R., ... & Yao, Q. (2017). Mobility effect on poroelastic seismic signatures in partially saturated rocks with applications in timelapse monitoring of a heavy oil reservoir. Journal of Geophysical Research: Solid Earth, 122(11), 8872-8891. DOI: https://doi.org/10.1002/2017JB014303.
[88] Jiang, C., Yang, W., Duan, M., Wang, G., & Xu, Z. (2022). Pore structure alteration and permeability enhancement of shale under cyclic thermal impacts. Powder Technology, 396, 385-393. DOI: https://doi.org/10.1016/j.powtec.2021.11.010.
[89] Shen, L., Pang, S., Zhong, M., Sun, Y., Qayum, A., Liu, Y., ... & Ren, X. (2023). A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. Ultrasonics Sonochemistry, 106646. DOI: https://doi.org/10.1016/j.ultsonch.2023.106646.
[90] Abdulkareem, F. A., & Padmanabhan, E. (2021). Applied techniques for residual oil recovery from source rocks: A review of current challenges and possible developments. The Canadian Journal of Chemical Engineering, 99(1), 251-267. DOI: https://doi.org/10.1002/cjce.23838.
[91] Fallah Kelarijani, A., Gholipour Zanjani, N., & Kamran Pirzaman, A. (2020). Ultrasonic assisted transesterification of rapeseed oil to biodiesel using nano magnetic catalysts. Waste and biomass valorization, 11(6), 2613-2621. DOI: https://doi.org/10.1007/s12649-019-00593-1.
[92] Kumar T, A., Pareek, S., Kaur, R., Sagar, N. A., Singh, L., Sami, R., ... & Rahman, M. M. (2022). Optimization of ultrasonic-assisted enzymatic extraction of freeze-dried sea buckthorn (Hippophae rhamnoides L.) berry oil using response surface methodology. Sustainability, 14(17), 10849. DOI: https://doi.org/10.3390/su141710849.
[93] Adeyemi, I., Meribout, M., & Khezzar, L. (2022). Recent developments, challenges, and prospects of ultrasound-assisted oil technologies. Ultrasonics Sonochemistry, 82, 105902. DOI: https://doi.org/10.1016/j.ultsonch.2021.105902.
[94] Struhs, E., Hansen, S., Mirkouei, A., Ramirez-Corredores, M. M., Sharma, K., Spiers, R., & Kalivas, J. H. (2021). Ultrasonic-assisted catalytic transfer hydrogenation for upgrading pyrolysis-oil. Ultrasonics Sonochemistry, 73, 105502. DOI: https://doi.org/10.1016/j.ultsonch.2021.105502.
[95] Wang, A., Chen, C., Liu, C., Ma, J., Lin, T., Ding, M., & Xu, H. (2024). Critical review on advances and perspectives of ultrasound assisted membrane technologies for water purification. Chemical Engineering Journal, 148873. DOI: https://doi.org/10.1016/j.cej.2024.148873.
[96] Khan, M. I., Shixing, W., Ullah, E., Sajjad, M., Zhang, L., & Fu, L. (2024). Enhanced metal recovery using ultrasound assisted leaching (UAL). An overview. Journal of Molecular Liquids, 125545. DOI: https://doi.org/10.3390/molecules29091984.
[97] Li, X., Zheng, L., Li, G., Pu, J., Zhang, T., & Huang, F. (2024). Enhanced oil recovery in tight reservoirs by ultrasonic-assisted CO2 flooding: Experimental study and molecular dynamics simulation. Fuel, 378, 132889. DOI: https://doi.org/10.1016/j.fuel.2024.132889.
[98] Alhalafi, M. H., Rizk, S. A., Al-Malki, E. S., & Algohary, A. M. (2024). Microwave-ultrasonic assisted lignin extraction to synthesize new nano micellar organometallic surfactants for refining oily wastewater. Bioresources and Bioprocessing, 11(1), 46. DOI: https://doi.org/10.1186/s40643-024-00761-9.
[99] Yu, R., Fu, G., Li, X., Xi, X., Chen, X., Chen, L., ... & Zhu, X. (2024). Ultrasonic-assisted preparation of SBS modified asphalt: Cavitation bubble numerical simulation and rheological properties. Ultrasonics Sonochemistry, 108, 106982. DOI: https://doi.org/10.1016/j.ultsonch.2024.106982.
[100] Drannikov, A. A., Trusova, M. E., & Di Martino, A. (2024). Reviewing twenty years of patents on ultrasonic-assisted pectin extraction from food and food waste. Chimica Techno Acta. 2024. Vol. 11.№ 2, 11(2). DOI: 10.15826/chimtech.2024.11.2.13.
[101] Suttiarporn, P., Seangwattana, T., Srisurat, T., Kongitthinon, K., Chumnanvej, N., & Luangkamin, S. (2024). Enhanced extraction of clove essential oil by ultrasound and microwave assisted hydrodistillation and their comparison in antioxidant activity. Current Research in Green and Sustainable Chemistry, 8, 100411. DOI: https://doi.org/10.1016/j.crgsc.2024.100411.
[102] Erturun, Ö. F., Tekaüt, H., Çiçek, A., Uçak, N., Namlu, R. H., Lotfi, B., & Kılıç, S. E. (2024). An experimental study on ultrasonic-assisted drilling of Inconel 718 under different cooling/lubrication conditions. The International Journal of Advanced Manufacturing Technology, 130(1), 665-682. DOI: https://doi.org/10.1007/s00170-023-12735-w.
[103] Shao, J., Ding, D., Zhu, Z., & Chen, X. (2024). Ultrasound◻assisted extraction of sumac fruit oil and analysis of its fatty acid composition. Journal of Food Science. DOI: https://doi.org/10.1111/1750-3841.17452.
[104] Joco, R. A., Lavarias, J. A., Peneyra, R. G., & Somera, C. G. (2024). Recent Development on the Extraction Process of Plants Essential Oil and its Effect on Chemical Composition: A Review. Advanced Journal of Graduate Research, 14(1), 9-20. DOI: https://doi.org/10.21467/ajgr.14.1.9-20.
[105] Mierez, J., AlTammar, M. J., & Alruwaili, K. M. (2023, June). Review of Recent Research Related to Ultrasonic Technologies for Well Productivity Enhancement. In ARMA US Rock Mechanics/Geomechanics Symposium (pp. ARMA-2023). ARMA. DOI: https://doi.org/10.56952/ARMA-2023-0477. | ||
آمار تعداد مشاهده مقاله: 269 تعداد دریافت فایل اصل مقاله: 415 |