- Shannon, M.A., P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas, and A.M. Mayes. (2008). Science and technology for water purification in the coming decades. Nature, 452(7185), 301-310. DOI: https://doi.org/10.1038/nature06599
- El-Dessouky, H.T., & Ettouney, H. M. (2002). Introduction. In Fundamentals of Salt Water Desalination. (p. 1-17). Elsevier. DOI: https://doi.org/10.1016/B978-044450810-2/50003-8
- Essa, F.A., A. Abdullah, H.S. Majdi, A. Basem, H.A. Dhahad, Z.M. Omara, S.A. Mohammed, W.H. Alawee, A.A. Ezzi, and T. Yusaf. (2022). Parameters affecting the efficiency of solar stills—recent review. Sustainability, 14(17), 10668. DOI: https://doi.org/10.3390/su141710668
- Tech, G.W. (2024). Addressing Water Insecurity in Southeast Asia: Causes & Solutions. Retrieved May 19, 2024, from: https://genesiswatertech.com/blog-post/addressing-water-insecurity-in-southeast-asia-causes-and-solutions/.
- UNICEF. (2023). South Asia has highest number of children exposed to severe water scarcity - UNICEF. Retrieved May 19, 2024, from: https://www.unicef.org/rosa/press-releases/south-asia-has-highest-number-children-exposed-severe-water-scarcity-unicef.
- Bank, A.D. (2015). Water: 12 Things to Know. Retrieved May 19, 2024, from: https://www.adb.org/news/features/12things-know-aboutwater#:~:text=Over%2075%25%20of%20Asia%20is,facing%20an%20imminent%20water%20crisis.&text=The%20gap%20between%20water%20demand,population%20faces%20a%20water%20crisis.
- Agency, E.E. (2009). Water resources across Europe — confronting water scarcity and drought. Retrieved May 19, 2024, from: https://www.eea.europa.eu/publications/water-resources-across-europe/at_download/file.
- Mekonnen, M.M. and A.Y. Hoekstra. (2016). Four billion people facing severe water scarcity. Science advances, 2(2), e1500323. DOI: https://doi.org/10.1126/sciadv.1500323
- Council, W.W. (2004). Water Problems in Latin America. Retrieved May 19, 2024, from: https://www.worldwatercouncil.org/fileadmin/wwc/News/WWC_News/water_problems_22.03.04.pdf.
- MAKINO, A.W.M. (2022). The Latin American climate crisis is also a water crisis. How do we move forward? Retrieved May 19, 2024, from: https://blogs.worldbank.org/en/latinamerica/latin-american-climate-crisis-also-water-crisis-how-do-we-move-forward.
- Hasan, E., A. Tarhule, Y. Hong, and B. Moore III. (2019). Assessment of physical water scarcity in Africa using GRACE and TRMM satellite data. Remote Sensing, 11(8), 904. DOI: https://doi.org/10.3390/rs11080904
- University, A.N. (2022). Remote Australians lack access to quality drinking water. Retrieved May 22, 2024, from: https://www.anu.edu.au/news/all-news/remote-australians-lack-access-to-quality-drinking-water#:~:text=Australians%20in%20more%20than%20400,Australian%20National%20University%20(ANU).
- Kucera, J. (2014). Introduction to Desalination. In Desalination: water from water. (p. 1-37). John Wiley & Sons. DOI: https://doi.org/10.1002/9781118904855.ch1
- Chaichan, M.T., H.A. Kazem, A.H. Al-Waeli, W.H. Elawee, M.A. Fayad, and K. Sopian. (2024). Advanced techniques for enhancing solar distiller productivity: a review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 736-772. DOI: https://doi.org/10.1080/15567036.2023.2289559
- Bhuiya, K.M.S., M.M.R. Rony, S. Ahmed, S.B. Udoy, N.I. Masuk, A.C. Diganta, M.H. Hasan, M. Islam, M.A. Islam, and A. Shariar. (2022, December). A Case Study on Hybrid Power Systems Using HOMER Pro: Design, Optimization and Comparison of Different Configurations and Proposing the Best Configuration for a University Campus. (Paper presented at the 5th International Conference on Mechanical, Industrial and Materials Engineering, Rajshahi, Bangladesh)
- Azad, A.A.S., Z.T. Oishi, M.A. Haque, P. Das, S.A. Udoy, and K.M.S. Bhuiya. (2024). An integrated framework for assessing renewable-energy supply chains using multicriteria decision-making: a study on Bangladesh. Clean Energy, 8(3), 1-19. DOI: https://doi.org/10.1093/ce/zkae019
- Shatat, M., M. Worall, and S. Riffat. (2013). Opportunities for solar water desalination worldwide. Sustainable cities and society, 9, 67-80. DOI: https://doi.org/10.1016/j.scs.2013.03.004
- Omara, A.A., A.A. Abuelnuor, H.A. Mohammed, and M. Khiadani. (2020). Phase change materials (PCMs) for improving solar still productivity: a review. Journal of Thermal Analysis and Calorimetry, 139(3), 1585-1617. DOI: https://doi.org/10.1007/s10973-019-08645-3
- Kabeel, A., M.H. Hamed, Z. Omara, and S. Sharshir. (2013). Water desalination using a humidification-dehumidification technique—a detailed review. DOI: http://dx.doi.org/10.4236/nr.2013.43036
- Buros, O.K. (2000). The ABCs of Desalting. (Denver: International Desalination Association)
- Hashemian, N. and A. Noorpoor. (2019). Assessment and multi-criteria optimization of a solar and biomass-based multi-generation system: Thermodynamic, exergoeconomic and exergoenvironmental aspects. Energy Conversion and Management, 195, 788-797. DOI: https://doi.org/10.1016/j.enconman.2019.05.039
- Sakthivadivel, D., K. Balaji, D.D.W. Rufuss, S. Iniyan, and L. Suganthi. (2021). Solar energy technologies: principles and applications. In Renewable-energy-driven future. (p. 3-42). Elsevier. DOI: https://doi.org/10.1016/B978-0-12-820539-6.00001-7
- Asadi, R.Z., F. Suja, and M.H. Ruslan. (2013). The application of a solar still in domestic and industrial wastewater treatment. Solar energy, 93, 63-71. DOI: https://doi.org/10.1016/j.solener.2013.03.024
- Abdelgaied, M., K. Harby, and A. Eisa. (2021). Performance improvement of modified tubular solar still by employing vertical and inclined pin fins and external condenser: an experimental study. Environmental Science and Pollution Research, 28, 13504-13514. DOI: https://doi.org/10.1007/s11356-020-11585-3
- Alaian, W., E. Elnegiry, and A.M. Hamed. (2016). Experimental investigation on the performance of solar still augmented with pin-finned wick. Desalination, 379, 10-15. DOI: https://doi.org/10.1016/j.desal.2015.10.010
- Rabhi, K., R. Nciri, F. Nasri, C. Ali, and H.B. Bacha. (2017). Experimental performance analysis of a modified single-basin single-slope solar still with pin fins absorber and condenser. Desalination, 416, 86-93. DOI: https://doi.org/10.1016/j.desal.2017.04.023
- Mohaisen, H., J. Esfahani, and M.B. Ayani. (2021). Improvement in the performance and cost of passive solar stills using a finned-wall/built-in condenser: An experimental study. Renewable Energy, 168, 170-180. DOI: https://doi.org/10.1016/j.renene.2020.12.056
- Alawee, W.H., H.A. Dhahad, and T.A. Mohammad. (2021). Enhancement of solar still productivity using absorber plate with inclined perforated rectangular fins: experimental study with economic analysis. Desalination and Water Treatment, 213, 53-63. DOI: https://doi.org/10.5004/dwt.2021.26730
- Sathyamurthy, R., A.E. Kabeel, A. Chamkha, H.A. Kumar, H. Venkateswaran, A.M. Manokar, R. Bharathwaaj, and S. Vasanthaseelan. (2022). Exergy and energy analysis of a tubular solar still with and without fins: a comparative theoretical and experimental approach. Environmental Science and Pollution Research, 29(5), 6612-6621. DOI: https://doi.org/10.1007/s11356-021-16065-w
- Abdelgaied, M., Y. Zakaria, A. Kabeel, and F.A. Essa. (2021). Improving the tubular solar still performance using square and circular hollow fins with phase change materials. Journal of Energy Storage, 38, 102564. DOI: https://doi.org/10.1016/j.est.2021.102564
- Suraparaju, S.K. and S.K. Natarajan. (2021). Experimental investigation of single-basin solar still using solid staggered fins inserted in paraffin wax PCM bed for enhancing productivity. Environmental Science and Pollution Research, 28(16), 20330-20343. DOI: https://doi.org/10.1007/s11356-020-11980-w
- Panchal, H. and R. Sathyamurthy. (2020). Experimental analysis of single-basin solar still with porous fins. International Journal of Ambient Energy, 41(5), 563-569. DOI: https://doi.org/10.1080/01430750.2017.1360206
- Taghvaei, H., H. Taghvaei, K. Jafarpur, M.K. Estahbanati, M. Feilizadeh, M. Feilizadeh, and A.S. Ardekani. (2014). A thorough investigation of the effects of water depth on the performance of active solar stills. Desalination, 347, 77-85. DOI: https://doi.org/10.1016/j.desal.2014.05.038
- Kabeel, A., S.W. Sharshir, G.B. Abdelaziz, M. Halim, and A. Swidan. (2019). Improving performance of tubular solar still by controlling the water depth and cover cooling. Journal of cleaner production, 233, 848-856. DOI: https://doi.org/10.1016/j.jclepro.2019.06.104
- Manokar, A.M., Y. Taamneh, D.P. Winston, P. Vijayabalan, D. Balaji, R. Sathyamurthy, S.P. Sundar, and D. Mageshbabu. (2020). Effect of water depth and insulation on the productivity of an acrylic pyramid solar still–An experimental study. Groundwater for Sustainable Development, 10, 100319. DOI: https://doi.org/10.1016/j.gsd.2019.100319
- Kumar, P.N., A.M. Manokar, B. Madhu, A. Kabeel, T. Arunkumar, H. Panchal, and R. Sathyamurthy. (2017). Experimental investigation on the effect of water mass in triangular pyramid solar still integrated to inclined solar still. Groundwater for Sustainable Development, 5, 229-234. DOI: https://doi.org/10.1016/j.gsd.2017.08.003
- Jahanpanah, M., S.J. Sadatinejad, A. Kasaeian, M.H. Jahangir, and H. Sarrafha. (2021). Experimental investigation of the effects of low-temperature phase change material on single-slope solar still. Desalination, 499, 114799. DOI: https://doi.org/10.1016/j.desal.2020.114799
- Katekar, V.P. and S.S. Deshmukh. (2020). A review of the use of phase change materials on performance of solar stills. Journal of Energy Storage, 30, 101398. DOI: https://doi.org/10.1016/j.est.2020.101398
- Kabeel, A. and M. Abdelgaied. (2016). Improving the performance of solar still by using PCM as a thermal storage medium under Egyptian conditions. Desalination, 383, 22-28. DOI: https://doi.org/10.1016/j.desal.2016.01.006
- Kumar, P.M., D. Sudarvizhi, K. Prakash, A. Anupradeepa, S.B. Raj, S. Shanmathi, K. Sumithra, and S. Surya. (2021). Investigating a single slope solar still with a nano-phase change material. Materials Today: Proceedings, 45, 7922-7925. DOI: https://doi.org/10.1016/j.matpr.2020.12.804
- Rufuss, D.D.W., L. Suganthi, S. Iniyan, and P. Davies. (2018). Effects of nanoparticle-enhanced phase change material (NPCM) on solar still productivity. Journal of Cleaner Production, 192, 9-29. DOI: https://doi.org/10.1016/j.jclepro.2018.04.201
- Kabeel, A., M.A. Teamah, M. Abdelgaied, and G.B.A. Aziz. (2017). Modified pyramid solar still with v-corrugated absorber plate and PCM as a thermal storage medium. Journal of Cleaner Production, 161, 881-887. DOI: https://doi.org/10.1016/j.jclepro.2017.05.195
- Sharshir, S., G. Peng, L. Wu, F. Essa, A. Kabeel, and N. Yang. (2017). The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance. Applied energy, 191, 358-366. DOI: https://doi.org/10.1016/j.apenergy.2017.01.067
- Chaichan, M.T. and H.A. Kazem. (2018). Single slope solar distillator productivity improvement using phase change material and Al2O3 nanoparticle. Solar Energy, 164, 370-381. DOI: https://doi.org/10.1016/j.solener.2018.02.049
- Cheng, W.-L., Y.-K. Huo, and Y.-L. Nian. (2019). Performance of solar still using shape-stabilized PCM: Experimental and theoretical investigation. Desalination, 455, 89-99. DOI: https://doi.org/10.1016/j.desal.2019.01.007
- Yousef, M.S. and H. Hassan. (2019). Energetic and exergetic performance assessment of the inclusion of phase change materials (PCM) in a solar distillation system. Energy conversion and management, 179, 349-361. DOI: https://doi.org/10.1016/j.enconman.2018.10.078
- Kumar, P.M., P. Chauhan, A.K. Sharma, M.L. Rinawa, A. Rahul, M. Srinivas, and A. Tamilarasan. (2022). Performance study on solar still using nano disbanded phase change material (NDPCM). Materials Today: Proceedings, 62, 1894-1897. DOI: https://doi.org/10.1016/j.matpr.2022.01.050
- Shoeibi, S., H. Kargarsharifabad, and N. Rahbar. (2021). Effects of nano-enhanced phase change material and nano-coated on the performance of solar stills. Journal of Energy Storage, 42, 103061. DOI: https://doi.org/10.1016/j.est.2021.103061
- Abdelgaied, M., M.E.H. Attia, A. Kabeel, and M.E. Zayed. (2022). Improving the thermo-economic performance of hemispherical solar distiller using copper oxide nanofluids and phase change materials: Experimental and theoretical investigation. Solar Energy Materials and Solar Cells, 238, 111596. DOI: https://doi.org/10.1016/j.solmat.2022.111596
- Iqbal, A., M.S. Mahmoud, E.T. Sayed, K. Elsaid, M.A. Abdelkareem, H. Alawadhi, and A. Olabi. (2021). Evaluation of the nanofluid-assisted desalination through solar stills in the last decade. Journal of Environmental Management, 277, 111415. DOI: https://doi.org/10.1016/j.jenvman.2020.111415
- Nagaraju, V., G. Murali, M. Sankeerthana, and M. Murugan. (2021). A review on recent developments of solar stills to enhance productivity using nanoparticles and nano-PCM. International Journal of Green Energy, 1956935. DOI: https://doi.org/10.1080/15435075.2021.1956935
- Thakur, V.K., M. Gaur, A. Dhamneya, and M. Sagar. (2021). Performance analysis of passive solar still with and without nanoparticles. Materials Today: Proceedings, 47, 6309-6316. DOI: https://doi.org/10.1016/j.matpr.2021.05.539
- Katekar, V.P., A.B. Rao, and V.R. Sardeshpande. (2024). Performance enhancement of solar distillation system with hemispherical projections and low-cost coating on absorber plate. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 23977914241259114. DOI: https://doi.org/10.1177/23977914241259114
- Elango, T., A. Kannan, and K.K. Murugavel. (2015). Performance study on single basin single slope solar still with different water nanofluids. Desalination, 360, 45-51. DOI: https://doi.org/10.1016/j.desal.2015.01.004
- Sharshir, S.W., G. Peng, L. Wu, N. Yang, F. Essa, A. Elsheikh, S.I. Mohamed, and A. Kabeel. (2017). Enhancing the solar still performance using nanofluids and glass cover cooling: experimental study. Applied thermal engineering, 113, 684-693. DOI: https://doi.org/10.1016/j.applthermaleng.2016.11.085
- Shoeibi, S., H. Kargarsharifabad, N. Rahbar, G. Ahmadi, and M.R. Safaei. (2022). Performance evaluation of a solar still using hybrid nanofluid glass cooling-CFD simulation and environmental analysis. Sustainable Energy Technologies and Assessments, 49, 101728. DOI: https://doi.org/10.1016/j.seta.2021.101728
- Rabbi, H.M.F. and A.Z. Sahin. (2021). Performance improvement of solar still by using hybrid nanofluids. Journal of Thermal Analysis and Calorimetry, 143(2), 1345-1360. DOI: https://doi.org/10.1007/s10973-020-10155-6
- Bellila, A., M.E.H. Attia, A. Kabeel, M. Abdelgaied, K. Harby, and J. Soli. (2021). Productivity enhancement of hemispherical solar still using Al2O3-water-based nanofluid and cooling the glass cover. Applied Nanoscience, 11(4), 1127-1139. DOI: https://doi.org/10.1007/s13204-021-01677-y
- Jathar, L.D. and S. Ganesan. (2021). Assessing the performance of concave type stepped solar still with nanoparticles and condensing cover cooling arrangement: an experimental approach. Groundwater for Sustainable Development, 12, 100539. DOI: https://doi.org/10.1016/j.gsd.2020.100539
- Ghandourah, E.I., A. Sangeetha, S. Shanmugan, M.E. Zayed, E.B. Moustafa, A. Tounsi, and A.H. Elsheikh. (2022). Performance assessment of a novel solar distiller with a double slope basin covered by coated wick with lanthanum cobalt oxide nanoparticles. Case Studies in Thermal Engineering, 32, 101859. DOI: https://doi.org/10.1016/j.csite.2022.101859
- Hasanianpour Faridani, Z. and A. Ameri. (2022). Performance enhancement of a basin solar still using γ-Al 2 O 3 nanoparticles and a mixer: an experimental approach. Journal of Thermal Analysis and Calorimetry, 1-13. DOI: https://doi.org/10.1007/s10973-021-10564-1
- Modi, K.V., H.K. Jani, and I.D. Gamit. (2021). Impact of orientation and water depth on productivity of single-basin dual-slope solar still with Al2O3 and CuO nanoparticles. Journal of Thermal Analysis and Calorimetry, 143(2), 899-913. DOI: https://doi.org/10.1007/s10973-020-09351-1
- Benoudina, B., M.E.H. Attia, Z. Driss, A. Afzal, A.M. Manokar, and R. Sathyamurthy. (2021). Enhancing the solar still output using micro/nano-particles of aluminum oxide at different concentrations: an experimental study, energy, exergy and economic analysis. Sustainable Materials and Technologies, 29, e00291. DOI: https://doi.org/10.1016/j.susmat.2021.e00291
- Nazari, S., H. Safarzadeh, and M. Bahiraei. (2019). Performance improvement of a single slope solar still by employing thermoelectric cooling channel and copper oxide nanofluid: an experimental study. Journal of cleaner production, 208, 1041-1052. DOI: https://doi.org/10.1016/j.jclepro.2018.10.194
- Abdullah, A., F. Essa, Z. Omara, Y. Rashid, L. Hadj-Taieb, G.B. Abdelaziz, and A. Kabeel. (2019). Rotating-drum solar still with enhanced evaporation and condensation techniques: comprehensive study. Energy Conversion and Management, 199, 112024. DOI: https://doi.org/10.1016/j.enconman.2019.112024
- Chen, W., C. Zou, X. Li, and H. Liang. (2019). Application of recoverable carbon nanotube nanofluids in solar desalination system: An experimental investigation. Desalination, 451, 92-101. DOI: https://doi.org/10.1016/j.desal.2017.09.025
- Kabeel, A.E., Z. Omara, and F. Essa. (2017). Numerical investigation of modified solar still using nanofluids and external condenser. Journal of the Taiwan Institute of Chemical Engineers, 75, 77-86. DOI: https://doi.org/10.1016/j.jtice.2017.01.017
- Attia, M.E.H., A. Karthick, A.M. Manokar, Z. Driss, A.E. Kabeel, R. Sathyamurthy, and M. Sharifpur. (2021). Sustainable potable water production from conventional solar still during the winter season at Algerian dry areas: energy and exergy analysis. Journal of Thermal Analysis and Calorimetry, 145, 1215-1225. DOI: https://doi.org/10.1007/s10973-020-10277-x
- Sahota, L. and G. Tiwari. (2016). Effect of Al2O3 nanoparticles on the performance of passive double slope solar still. Solar Energy, 130, 260-272. DOI: https://doi.org/10.1016/j.solener.2016.02.018
- Modi, K.V., D.L. Shukla, and D.B. Ankoliya. (2019). A comparative performance study of double basin single slope solar still with and without using nanoparticles. Journal of Solar Energy Engineering, 141(3), 031008. DOI: https://doi.org/10.1115/1.4041838
- Cherraye, R., B. Bouchekima, D. Bechki, H. Bouguettaia, and A. Khechekhouche. (2022). The effect of tilt angle on solar still productivity at different seasons in arid conditions (south Algeria). International Journal of Ambient Energy, 43(1), 1847-1853. DOI: https://doi.org/10.1080/01430750.2020.1723689
- Panchal, H., D. Mevada, K.K. Sadasivuni, F. Essa, S. Shanmugan, and M. Khalid. (2020). Experimental and water quality analysis of solar stills with vertical and inclined fins. Groundwater for Sustainable Development, 11, 100410. DOI: https://doi.org/10.1016/j.gsd.2020.100410
- Dhivagar, R. and M. Mohanraj. (2021). Performance improvements of single slope solar still using graphite plate fins and magnets. Environmental Science and Pollution Research, 28, 20499-20516. DOI: https://doi.org/10.1007/s11356-020-11737-5
- Tuly, S., M. Rahman, M. Sarker, and R. Beg. (2021). Combined influence of fin, phase change material, wick, and external condenser on the thermal performance of a double slope solar still. Journal of Cleaner Production, 287, 125458. DOI: https://doi.org/10.1016/j.jclepro.2020.125458
- Nafey, A.S., M. Abdelkader, A. Abdelmotalip, A.J.E.c. Mabrouk, and management. (2000). Parameters affecting solar still productivity. 41(16), 1797-1809.
- Omara, Z., A. Kabeel, and A. Abdullah. (2017). A review of solar still performance with reflectors. Renewable and Sustainable Energy Reviews, 68, 638-649. DOI: https://doi.org/10.1016/j.rser.2016.10.031
- Gnanaraj, S.J.P. and V. Velmurugan. (2019). An experimental study on the efficacy of modifications in enhancing the performance of single basin double slope solar still. Desalination, 467, 12-28. DOI: https://doi.org/10.1016/j.desal.2019.05.015
- Essa, F., A. Abdullah, Z. Omara, A. Kabeel, and Y. Gamiel. (2021). Experimental study on the performance of trays solar still with cracks and reflectors. Applied Thermal Engineering, 188, 116652. DOI: https://doi.org/10.1016/j.applthermaleng.2021.116652
- Younis, O., A.K. Hussein, M.E.H. Attia, F.L. Rashid, L. Kolsi, U. Biswal, A. Abderrahmane, A. Mourad, and A. Alazzam. (2022). Hemispherical solar still: Recent advances and development. Energy Reports, 8, 8236-8258. DOI: https://doi.org/10.1016/j.egyr.2022.06.037
- Abdullah, A., Z. Omara, F. Essa, A. Alarjani, I.B. Mansir, and M. Amro. (2021). Enhancing the solar still performance using reflectors and sliding-wick belt. Solar Energy, 214, 268-279. DOI: https://doi.org/10.1016/j.solener.2020.11.016
- El-Samadony, Y., A. Abdullah, and Z. Omara. (2015). Experimental study of stepped solar still integrated with reflectors and external condenser. Experimental heat transfer, 28(4), 392-404. DOI: https://doi.org/10.1080/08916152.2014.890964
- Tanaka, H. (2009). Experimental study of a basin type solar still with internal and external reflectors in winter. Desalination, 249(1), 130-134. DOI: https://doi.org/10.1016/j.desal.2009.02.057
- Bataineh, K.M. and M.A. Abbas. (2020). Performance analysis of solar still integrated with internal reflectors and fins. Solar Energy, 205, 22-36. DOI: https://doi.org/10.1016/j.solener.2020.04.059
- Abdullah, A., F.A. Essa, H.B. Bacha, and Z. Omara. (2020). Improving the trays solar still performance using reflectors and phase change material with nanoparticles. Journal of Energy Storage, 31, 101744. DOI: https://doi.org/10.1016/j.est.2020.101744
- Kabeel, A., M.M. Khairat Dawood, T. Nabil, and B.E. Alonafal. (2020). Improving the performance of stepped solar still using a graphite and PCM as hybrid store materials with internal reflectors coupled with evacuated tube solar collector. Heat and Mass Transfer, 56, 891-899. DOI: https://doi.org/10.1007/s00231-019-02741-8
- Bhargva, M. and A. Yadav. (2024). Productivity augmentation of single-slope solar still using evacuated tubes, heat exchanger, internal reflectors and external condenser. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 2646-2666. DOI: https://doi.org/10.1080/15567036.2019.1691291
- Sharshir, S.W., M. Rozza, M. Elsharkawy, M. Youns, F. Abou-Taleb, and A. Kabeel. (2022). Performance evaluation of a modified pyramid solar still employing wick, reflectors, glass cooling and TiO2 nanomaterial. Desalination, 539, 115939. DOI: https://doi.org/10.1016/j.desal.2022.115939
- Estahbanati, M.K., A. Ahsan, M. Feilizadeh, K. Jafarpur, S.-S. Ashrafmansouri, and M. Feilizadeh. (2016). Theoretical and experimental investigation on internal reflectors in a single-slope solar still. Applied energy, 165, 537-547. DOI: https://doi.org/10.1016/j.apenergy.2015.12.047
- Gnanaraj, S.J.P., S. Ramachandran, and D.S. Christopher. (2017). Enhancing the design to optimize the performance of double basin solar still. Desalination, 411, 112-123. DOI: https://doi.org/10.1016/j.desal.2017.02.011
- Afrand, M., R. Kalbasi, A. Karimipour, and S. Wongwises. (2016). Experimental investigation on a thermal model for a basin solar still with an external reflector. Energies, 10(1), 18. DOI: https://doi.org/10.3390/en10010018
- Omara, Z., A. Abdullah, F. Essa, and M. Younes. (2021). Performance evaluation of a vertical rotating wick solar still. Process Safety and Environmental Protection, 148, 796-804. DOI: https://doi.org/10.1016/j.psep.2021.02.004
- Essa, F., Z. Omara, A. Abdullah, A. Kabeel, and G. Abdelaziz. (2021). Enhancing the solar still performance via rotating wick belt and quantum dots nanofluid. Case Studies in Thermal Engineering, 27, 101222. DOI: https://doi.org/10.1016/j.csite.2021.101222
- Hansen, R.S., C.S. Narayanan, and K.K. Murugavel. (2015). Performance analysis on inclined solar still with different new wick materials and wire mesh. Desalination, 358, 1-8. DOI: https://doi.org/10.1016/j.desal.2014.12.006
- Omara, Z., A. Kabeel, A. Abdullah, and F. Essa. (2016). Experimental investigation of corrugated absorber solar still with wick and reflectors. Desalination, 381, 111-116. DOI: https://doi.org/10.1016/j.desal.2015.12.001
- Abdelaziz, G.B., A.M. Algazzar, E.M. El-Said, A.M. Elsaid, S.W. Sharshir, A. Kabeel, and S. El-Behery. (2021). Performance enhancement of tubular solar still using nano-enhanced energy storage material integrated with v-corrugated aluminum basin, wick, and nanofluid. Journal of Energy Storage, 41, 102933. DOI: https://doi.org/10.1016/j.est.2021.102933
- Murugavel, K.K. and K. Srithar. (2011). Performance study on basin type double slope solar still with different wick materials and minimum mass of water. Renewable Energy, 36(2), 612-620. DOI: https://doi.org/10.1016/j.renene.2010.08.009
- Sharshir, S.W., M. Salman, S. El-Behery, M. Halim, and G.B. Abdelaziz. (2021). Enhancement of solar still performance via wet wick, different aspect ratios, cover cooling, and reflectors. International Journal of Energy and Environmental Engineering, 12(3), 517-530. DOI: https://doi.org/10.1007/s40095-021-00386-0
- Manikandan, V., K. Shanmugasundaram, S. Shanmugan, B. Janarthanan, and J. Chandrasekaran. (2013). Wick type solar stills: a review. Renewable and sustainable energy reviews, 20, 322-335. DOI: https://doi.org/10.1016/j.rser.2012.11.046
- Velmurugan, V., M. Gopalakrishnan, R. Raghu, and K. Srithar. (2008). Single basin solar still with fin for enhancing productivity. Energy Conversion and Management, 49(10), 2602-2608. DOI: https://doi.org/10.1016/j.enconman.2008.05.010
- Essa, F., W.H. Alawee, S.A. Mohammed, H.A. Dhahad, A. Abdullah, and Z. Omara. (2021). Experimental investigation of convex tubular solar still performance using wick and nanocomposites. Case Studies in Thermal Engineering, 27, 101368. DOI: https://doi.org/10.1016/j.csite.2021.101368
- Alawee, W.H., F. Essa, S.A. Mohammed, H.A. Dhahad, A. Abdullah, Z. Omara, and Y. Gamiel. (2021). Improving the performance of pyramid solar distiller using dangled cords of various wick materials: Novel working mechanism of wick. Case Studies in Thermal Engineering, 28, 101550. DOI: https://doi.org/10.1016/j.csite.2021.101550
- Mahdi, J., B. Smith, and A. Sharif. (2011). An experimental wick-type solar still system: design and construction. Desalination, 267(2-3), 233-238. DOI: https://doi.org/10.1016/j.desal.2010.09.032
- Younes, M., A. Abdullah, F. Essa, Z. Omara, and M. Amro. (2021). Enhancing the wick solar still performance using half barrel and corrugated absorbers. Process Safety and Environmental Protection, 150, 440-452. DOI: https://doi.org/10.1016/j.psep.2021.04.036
- Mohamed, A., A. Hegazi, G. Sultan, and E.M. El-Said. (2019). Augmented heat and mass transfer effect on performance of a solar still using porous absorber: experimental investigation and exergetic analysis. Applied Thermal Engineering, 150, 1206-1215. DOI: https://doi.org/10.1016/j.applthermaleng.2019.01.070
- Peng, G., S.W. Sharshir, Y. Wang, M. An, D. Ma, J. Zang, A. Kabeel, and N. Yang. (2021). Potential and challenges of improving solar still by micro/nano-particles and porous materials-A review. Journal of Cleaner Production, 311, 127432. DOI: https://doi.org/10.1016/j.jclepro.2021.127432
- Rashidi, S., N. Rahbar, M.S. Valipour, and J.A. Esfahani. (2018). Enhancement of solar still by reticular porous media: experimental investigation with exergy and economic analysis. Applied Thermal Engineering, 130, 1341-1348. DOI: https://doi.org/10.1016/j.applthermaleng.2017.11.089
- Arunkumar, T., A. Kabeel, K. Raj, D. Denkenberger, R. Sathyamurthy, P. Ragupathy, and R. Velraj. (2018). Productivity enhancement of solar still by using porous absorber with bubble-wrap insulation. Journal of Cleaner Production, 195, 1149-1161. DOI: https://doi.org/10.1016/j.jclepro.2018.05.199
- Mohamed, A., A. Hegazi, G. Sultan, and E.M. El-Said. (2019). Enhancement of a solar still performance by inclusion the basalt stones as a porous sensible absorber: experimental study and thermo-economic analysis. Solar Energy Materials and Solar Cells, 200, 109958. DOI: https://doi.org/10.1016/j.solmat.2019.109958
- Hassan, H., M.S. Yousef, M.S. Ahmed, and M. Fathy. (2020). Energy, exergy, environmental, and economic analysis of natural and forced cooling of solar still with porous media. Environmental Science and Pollution Research, 27(30), 38221-38240. DOI: https://doi.org/10.1007/s11356-020-09995-4
- Abdallah, S., M.M. Abu-Khader, and O. Badran. (2009). Effect of various absorbing materials on the thermal performance of solar stills. Desalination, 242(1-3), 128-137. DOI: https://doi.org/10.1016/j.desal.2008.03.036
- Rajaseenivasan, T., T. Elango, and K.K. Murugavel. (2013). Comparative study of double basin and single basin solar stills. Desalination, 309, 27-31. DOI: https://doi.org/10.1016/j.desal.2012.09.014
- Rajaseenivasan, T., K. Kalidasa Murugavel, and T. Elango. (2015). Performance and exergy analysis of a double-basin solar still with different materials in basin. Desalination and Water Treatment, 55(7), 1786-1794. DOI: https://doi.org/10.1080/19443994.2014.928800
- Rajaseenivasan, T. and K.K. Murugavel. (2013). Theoretical and experimental investigation on double basin double slope solar still. Desalination, 319, 25-32. DOI: https://doi.org/10.1016/j.desal.2013.03.029
- Zurigat, Y.H. and M.K. Abu-Arabi. (2004). Modelling and performance analysis of a regenerative solar desalination unit. Applied thermal engineering, 24(7), 1061-1072. DOI: https://doi.org/10.1016/j.desal.2013.03.029
- ElSherbiny, S.M. and H.E. Fath. (1993). Solar distillation under climatic conditions of Egypt. Renewable energy, 3(1), 61-65. DOI: https://doi.org/10.1016/0960-1481(93)90131-Y
- Elsafty, A., H. Fath, and A. Amer. (2008). Mathematical model development for a new solar desalination system (SDS). Energy conversion and management, 49(11), 3331-3337. DOI: https://doi.org/10.1016/j.enconman.2008.04.016
- El-Sebaii, A. (2004). Effect of wind speed on active and passive solar stills. Energy Conversion and Management, 45(7-8), 1187-1204. DOI: https://doi.org/10.1016/j.enconman.2003.09.036
- El-Sebaii, A. (2000). Effect of wind speed on some designs of solar stills. Energy Conversion and Management, 41(6), 523-538. DOI: https://doi.org/10.1016/S0196-8904(99)00119-3
- El-Sebaii, A. (2011). On effect of wind speed on passive solar still performance based on inner/outer surface temperatures of the glass cover. Energy, 36(8), 4943-4949. DOI: https://doi.org/10.1016/j.energy.2011.05.038
- Rajaseenivasan, T., K.K. Murugavel, T. Elango, and R.S. Hansen. (2013). A review of different methods to enhance the productivity of the multi-effect solar still. Renewable and Sustainable Energy Reviews, 17, 248-259. DOI: https://doi.org/10.1016/j.rser.2012.09.035
- Estahbanati, M.K., M. Feilizadeh, K. Jafarpur, M. Feilizadeh, and M.R. Rahimpour. (2015). Experimental investigation of a multi-effect active solar still: the effect of the number of stages. Applied Energy, 137, 46-55. DOI: https://doi.org/10.1016/j.apenergy.2014.09.082
- Shanazari, E. and R. Kalbasi. (2018). Improving performance of an inverted absorber multi-effect solar still by applying exergy analysis. Applied Thermal Engineering, 143, 1-10. DOI: https://doi.org/10.1016/j.applthermaleng.2018.07.021
- Xiong, J., G. Xie, and H. Zheng. (2013). Experimental and numerical study on a new multi-effect solar still with enhanced condensation surface. Energy conversion and management, 73, 176-185. DOI: https://doi.org/10.1016/j.enconman.2013.04.024
- Alshammari, F., M. Elashmawy, and M.M. Ahmed. (2021). Cleaner production of freshwater using multi-effect tubular solar still. Journal of Cleaner Production, 281, 125301. DOI: https://doi.org/10.1016/j.jclepro.2020.125301
- Mohanraj, M., L. Karthick, and R. Dhivagar. (2021). Performance and economic analysis of a heat pump water heater assisted regenerative solar still using latent heat storage. Applied Thermal Engineering, 196, 117263. DOI: https://doi.org/10.1016/j.applthermaleng.2021.117263
- Dhivagar, R., B. Deepanraj, M. Mohanraj, and A. Prakash. (2022). Thermal performance, cost effectiveness and environmental analysis of a heat pump assisted regenerative solar still using slack wax as heat storage material. Sustainable Energy Technologies and Assessments, 52, 102090. DOI: https://doi.org/10.1016/j.seta.2022.102090
- Hidouri, K., R.B. Slama, and S. Gabsi. (2010). Hybrid solar still by heat pump compression. Desalination, 250(1), 444-449. DOI: https://doi.org/10.1016/j.desal.2009.09.075
- Halima, H.B., N. Frikha, and R.B. Slama. (2014). Numerical investigation of a simple solar still coupled to a compression heat pump. Desalination, 337, 60-66. DOI: https://doi.org/10.1016/j.desal.2014.01.010
- Shakir, Y., M. Mohanraj, Y. Belyayev, S. Jayaraj, and A. Kaltayev. (2016). Numerical simulation of a heat pump assisted regenerative solar still for cold climates of Kazakhstan. Bulgarian Chemical Communications, 48(1), 126. DOI: http://dx.doi.org/10.2298/TSCI17S2411S
- Hidouri, K. and M. Mohanraj. (2019). Thermodynamic analysis of a heat pump assisted active solar still. Desalination and Water Treatment, 154, 101-110. DOI: https://doi.org/10.5004/dwt.2019.24047
- Boutriaa, A. and A. Rahmani. (2017). Thermal modeling of a basin type solar still enhanced by a natural circulation loop. Computers & Chemical Engineering, 101, 31-43. DOI: https://doi.org/10.1016/j.compchemeng.2017.02.033
- Rahmani, A., A. Boutriaa, and A. Hadef. (2015). An experimental approach to improve the basin type solar still using an integrated natural circulation loop. Energy conversion and management, 93, 298-308. DOI: https://doi.org/10.1016/j.enconman.2015.01.026
- Balasubramanian, K., B. Jinshah, K. Ravikumar, and S. Divakar. (2022). Thermal and hydraulic characteristics of a parabolic trough collector based on an open natural circulation loop: The effect of fluctuations in solar irradiance. Sustainable Energy Technologies and Assessments, 52, 102290. DOI: https://doi.org/10.1016/j.seta.2022.102290
- Chaichan, M.T., H.A. Kazem, A.H. Al-Waeli, S.A. Mohammed, Z.M. Omara, and K. Sopian. (2023). Performance enhancement of solar distillation system works in harsh weather conditions: An experimental study. Thermal Science and Engineering Progress, 43, 101981. DOI: https://doi.org/10.1016/j.tsep.2023.101981
- Danish, S.N., A. El-Leathy, M. Alata, and H. Al-Ansary. (2019). Enhancing solar still performance using vacuum pump and geothermal energy. Energies, 12(3), 539. DOI: https://doi.org/10.3390/en12030539
- Verma, S., R. Das, and N.K. Mishra. (2023). Concept of integrating geothermal energy for enhancing the performance of solar stills. Desalination, 564, 116817. DOI: https://doi.org/10.1016/j.desal.2023.116817
- Forghani, A.H., A.A. Solghar, and H. Hajabdollahi. (2024). Optimal design of a multi-generation system based on solar and geothermal energy integrated with multi-effect distillatory. Applied Thermal Engineering, 236, 121381. DOI: https://doi.org/10.1016/j.applthermaleng.2023.121381
- Gaur, M. and G. Tiwari. (2010). Optimization of number of collectors for integrated PV/T hybrid active solar still. Applied Energy, 87(5), 1763-1772. DOI: https://doi.org/10.1016/j.apenergy.2009.10.019
- Kabeel, A., R. Sathyamurthy, S. El-Agouz, A. Muthu Manokar, and E.M. El-Said. (2019). Experimental studies on inclined PV panel solar still with cover cooling and PCM. Journal of Thermal Analysis and Calorimetry, 138, 3987-3995. DOI: https://doi.org/10.1007/s10973-019-08561-6
- Singh, D., J. Yadav, V. Dwivedi, S. Kumar, G. Tiwari, and I. Al-Helal. (2016). Experimental studies of active solar still integrated with two hybrid PVT collectors. Solar Energy, 130, 207-223. DOI: https://doi.org/10.1016/j.solener.2016.02.024
- Abd Elbar, A.R. and H. Hassan. (2019). Experimental investigation on the impact of thermal energy storage on the solar still performance coupled with PV module via new integration. Solar Energy, 184, 584-593. DOI: https://doi.org/10.1016/j.solener.2019.04.042
- Manokar, A.M., D.P. Winston, A. Kabeel, and R. Sathyamurthy. (2018). Sustainable fresh water and power production by integrating PV panel in inclined solar still. Journal of cleaner production, 172, 2711-2719. DOI: https://doi.org/10.1016/j.jclepro.2017.11.140
- Winston, D.P., P. Pounraj, A.M. Manokar, R. Sathyamurthy, and A. Kabeel. (2018). Experimental investigation on hybrid PV/T active solar still with effective heating and cover cooling method. Desalination, 435, 140-151. DOI: https://doi.org/10.1016/j.desal.2017.11.007
- Riahi, A., K. Wan Yusof, B.S. Mahinder Singh, M.H. Isa, E. Olisa, and N.A.M. Zahari. (2016). Sustainable potable water production using a solar still with photovoltaic modules-AC heater. Desalination and Water Treatment, 57(32), 14929-14944. DOI: https://doi.org/10.1080/19443994.2015.1070285
- Moh’d A, A.-N. and W.A. Al-Ammari. (2016). A novel hybrid PV-distillation system. Solar energy, 135, 874-883. DOI: https://doi.org/10.1016/j.solener.2016.06.061
|