- Abdzad Gohari, A., Nik Akhtar, A., Ebrahimipak, N., & Tafteh, A. (2023). Using NIAZAB System to Determine Soybean Water Use Based on the Inverse Solution of the Production Functions under Different Irrigation Conditions. Journal of Water Research in Agriculture, 37(2), 159-169. doi:http://10.22092/jwra.2023.361550.978
- Akbari Majd, A., Azizi Mobaser, J., Rasoulzadeh, A., Hasanpour Kashani, M., & Kisi, O. (2024). Enhancing the accuracy of metaheuristic neural networks in predicting underground water levels using meteorological data and remote sensing: A case study of Ardabil Plain, Iran. Ain Shams Engineering Journal, 103061. doi:https://doi.org/10.1016/j.asej.2024.103061
- Alavi, M., Albaji, M., Golabi, M., Ali Naseri, A., & Homayouni, S. (2024). Estimation of sugarcane evapotranspiration from remote sensing and limited meteorological variables using machine learning models. Journal of Hydrology, 629, 130605. doi:https://doi.org/10.1016/j.jhydrol.2023.130605
- Allan, R., Pereira, L., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56 (Vol. 56).
- Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56 (Vol. 300).
- Amani, S., & Shafizadeh-Moghadam, H. (2023). A review of machine learning models and influential factors for estimating evapotranspiration using remote sensing and ground-based data. Agricultural water management, 284, 108324. doi:https://doi.org/10.1016/j.agwat.2023.108324
- Bachour, R., Maslova, I., Ticlavilca, A. M., Walker, W. R., & McKee, M. (2016). Wavelet-multivariate relevance vector machine hybrid model for forecasting daily evapotranspiration. Stochastic Environmental Research and Risk Assessment, 30, 103-117.
- Ball, J. T., Woodrow, I. E., & Berry, J. A. (1987). A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis under Different Environmental Conditions. In J. Biggins (Ed.), Progress in Photosynthesis Research: Volume 4 Proceedings of the VIIth International Congress on Photosynthesis Providence, Rhode Island, USA, August 10–15, 1986 (pp. 221-224). Dordrecht: Springer Netherlands.
- Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., & Holtslag, A. A. M. (1998). A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of Hydrology, 212-213, 198-212. doi:https://doi.org/10.1016/S0022-1694(98)00253-4
- Blaney, H. F. (1952). Determining water requirements in irrigated areas from climatological and irrigation data.
- Breiman, L. (2001). Random Forests. Machine learning, 45(1), 5-32. doi:https://10.1023/A:1010933404324
- Bui, D., Pradhan, B., Löfman, O., Revhaug, I., & Dick, Ø. (2012). Landslide susceptibility assessment in the Hoa Binh Province of Vietnam: A comparison of the Levenberg-Marquardt and Bayesian regularized neural networks. Geomorphology, 171-172. doi:https://10.1016/j.geomorph.2012.04.023
- Callañaupa Gutierrez, S., Segura Cajachagua, H., Saavedra Huanca, M., Flores Rojas, J., Silva Vidal, Y., & Cuxart, J. (2021). Seasonal variability of daily evapotranspiration and energy fluxes in the Central Andes of Peru using eddy covariance techniques and empirical methods. Atmospheric Research, 261, 105760. doi:https://doi.org/10.1016/j.atmosres.2021.105760
- Carlson, T. N., Capehart, W. J., & Gillies, R. R. (1995). A new look at the simplified method for remote sensing of daily evapotranspiration. Remote Sensing of Environment, 54(2), 161-167. doi:https://doi.org/10.1016/0034-4257(95)00139-R
- Chatfield, C., & Xing, H. (2019). The analysis of time series: an introduction with R: Chapman and hall/CRC.
- Chen, J. M., & Liu, J. (2020). Evolution of evapotranspiration models using thermal and shortwave remote sensing data. Remote Sensing of Environment, 237, 111594. doi:https://doi.org/10.1016/j.rse.2019.111594
- Chia, M. Y., Huang, Y. F., & Koo, C. H. (2022). Resolving data-hungry nature of machine learning reference evapotranspiration estimating models using inter-model ensembles with various data management schemes. Agricultural water management, 261, 107343. doi:https://doi.org/10.1016/j.agwat.2021.107343
- Chia, M. Y., Huang, Y. F., Koo, C. H., Ng, J. L., Ahmed, A. N., & El-Shafie, A. (2022). Long-term forecasting of monthly mean reference evapotranspiration using deep neural network: A comparison of training strategies and approaches. Applied Soft Computing, 126, 109221. doi:https://doi.org/10.1016/j.asoc.2022.109221
- Cleugh, H. A., Leuning, R., Mu, Q., & Running, S. W. (2007). Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sensing of Environment, 106(3), 285-304. doi:https://doi.org/10.1016/j.rse.2006.07.007
- Córdova, M., Carrillo-Rojas, G., Crespo, P., Wilcox, B., & Célleri, R. (2015). Evaluation of the Penman-Monteith (FAO 56 PM) Method for Calculating Reference Evapotranspiration Using Limited Data. Application to the Wet Páramo of Southern Ecuador. Mountain Research and Development, 35, 230-239. doi:https://10.1659/MRD-JOURNAL-D-14-0024.1
- Coucke, W., & Soumali, M. (2017). Demystifying EQA statistics and reports. Biochemia Medica, 27, 37-48. doi:https://10.11613/BM.2017.006
- Del Cerro, R. T. G., Subathra, M., Kumar, N. M., Verrastro, S., & George, S. T. (2021). Modelling the daily reference evapotranspiration in semi-arid region of South India: A case study comparing ANFIS and empirical models. Information Processing in Agriculture, 8(1), 173-184. doi:https://
- Deng, C., Wu, J., & Shao, X. (2008). Reliability Assessment of Machining Accuracy on Support Vector Machine. Paper presented at the Intelligent Robotics and Applications, Berlin, Heidelberg.
- Deris, A. M., Zain, A. M., & Sallehuddin, R. (2011). Overview of Support Vector Machine in Modeling Machining Performances. Procedia Engineering, 24, 308-312. doi:https://doi.org/10.1016/j.proeng.2011.11.2647
- Dong, X., Yu, Z., Cao, W., Shi, Y., & Ma, Q. (2020). A survey on ensemble learning. Frontiers of Computer Science, 14(2), 241-258. doi:https://10.1007/s11704-019-8208-z
- Dos Santos, R. A., Mantovani, E. C., Bufon, V. B., & Fernandes-Filho, E. I. (2024). Improving actual evapotranspiration estimates through an integrated remote sensing and cutting-edge machine learning approach. Computers and Electronics in Agriculture, 225, 109258. doi:https://doi.org/10.1016/j.compag.2024.109258
- Dou, X., & Yang, Y. (2018). Evapotranspiration estimation using four different machine learning approaches in different terrestrial ecosystems. Computers and Electronics in Agriculture, 148, 95-106.
- Draper, J. V., Kaber, D. B., & Usher, J. M. (1998). Telepresence. Human Factors, 40(3), 354-375. doi:10.1518/001872098779591386
- Draper, N. (1998). Applied regression analysis: McGraw-Hill. Inc.
- Duhan, D., Singh, D., & Arya, S. (2020). Effect of projected climate change on reference evapotranspiration in the semiarid region of central India. Journal of Water and Climate Change, 12(5), 1854-1870. doi:https://10.2166/wcc.2020.168
- Elbeltagi, A., Srivastava, A., Li, P., Jiang, J., Jinsong, D., Rajput, J., ..., & Awad, A. (2023). Forecasting actual evapotranspiration without climate data based on stacked integration of DNN and meta-heuristic models across China from 1958 to 2021. Journal of Environmental Management, 345, 118697. doi:https://doi.org/10.1016/j.jenvman.2023.118697
- Eslamian, S., Gohari, A., Zareian, M. J., & Firoozfar, A. R. (2012). Estimating Penman–Monteith Reference Evapotranspiration Using Artificial Neural Networks and Genetic Algorithm: A Case Study. Arabian Journal for Science and Engineering, 37. doi:https://10.1007/s13369-012-0214-5
- Fakhar, M. S., & Kaviani, A. (2024). Accurate estimation of actual evapotranspiration using remote sensing data for improved water management in the Moghan plain. Water and Irrigation Management, -. doi:https://10.22059/jwim.2024.369438.1123
- Fan, J., Yue, W., Wu, L., Zhang, F., Cai, H., Xiukang, W., ..., & Xiang, Y. (2018). Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China. Agricultural and Forest Meteorology, 263, 225-241. doi:https://10.1016/j.agrformet.2018.08.019
- Fang, L., Zhan, X., Kalluri, S., Yu, P., Hain, C., Anderson, M., & Laszlo, I. (2022). Application of a Machine Learning Algorithm in Generating an Evapotranspiration Data Product From Coupled Thermal Infrared and Microwave Satellite Observations. Front Big Data, 5, 768676. doi:https://10.3389/fdata.2022.768676
- Fattahi dolatabadi, K., Babazadeh, H., Najafi, P., & Sedghi, H. (2018). A Model for Irrigation Scheduling Using the Difference between Air and Leaf Temperature of Corn. Journal of Water Research in Agriculture, 32(2), 305-320. doi:https://10.22092/jwra.2018.116972
- Feng, Y., Peng, Y., Cui, N., Gong, D., & Zhang, K. (2017). Modeling reference evapotranspiration using extreme learning machine and generalized regression neural network only with temperature data. Computers and Electronics in Agriculture, 136, 71-78. doi:https://doi.org/10.1016/j.compag.2017.01.027
- Forner, G., Abate, D., Mengoli, C., Palù, G., & Gussetti, N. (2015). High Cytomegalovirus (CMV) DNAemia Predicts CMV Sequelae in Asymptomatic Congenitally Infected Newborns Born to Women With Primary Infection During Pregnancy. J Infect Dis, 212(1), 67-71. doi:10.1093/infdis/jiu627
- Glantz, M. H. (1990). On the interactions between climate and society. Population and Development Review, 16, 179-200. doi:https://10.1007/s11707-008-0045-6
- Glantz, P. O., Rangert, B., Svensson, A., Stafford, G. D., Arnvidarson, B., Randow, K., ..., & Hultén, J. (1993). On clinical loading of osseointegrated implants. A methodological and clinical study. Clin Oral Implants Res, 4(2), 99-105. doi:10.1034/j.1600-0501.1993.040206.x
- Gokcekus, H., Kassem, Y., & Woyea, L. T. (2023). A Prediction of Rainfall of Haifa Using MLR and ARIMA Models. International Journal of Engineering and Applied Physics, 3(1), 612-624. doi:https://ijeap.org/ijeap/article/view/109
- Goward, S. N., Cruickshanks, G. D., & Hope, A. S. (1985). Observed relation between thermal emission and reflected spectral radiance of a complex vegetated landscape. Remote Sensing of Environment, 18(2), 137-146. doi:https://doi.org/10.1016/0034-4257(85)90044-6
- Granata, F. (2019). Evapotranspiration evaluation models based on machine learning algorithms—A comparative study. Agricultural water management, 217, 303-315. doi:https://
- Hassan, M. A., Khalil, A., Kaseb, S., & Kassem, M. A. (2017). Exploring the reference of tree-based ensemble methods in solar radiation modeling. Applied Energy, 203, 897-916. doi:https://doi.org/10.1016/j.apenergy.2017.06.104
- Heckert, N., Filliben, J., Croarkin, C., Hembree, B., Guthrie, W., Tobias, P., & Prinz, J. (2002). Handbook 151: NIST/SEMATECH e-Handbook of Statistical Methods: NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD.
- Heravi, H., & Zolfaghari, A.-A. (2024). Using Machine Learning Method to Estimate Evapotranspiration (Case Study: Semnan Province). Iranian Journal of Soil and Water Research, 55(5), 781-797. doi:https://10.22059/ijswr.2024.371452.669652
- Hund, E., Massart, D. L., & Smeyers-Verbeke, J. (2000). Inter-laboratory studies in analytical chemistry. Analytica Chimica Acta, 423(2), 145-165. doi:https://doi.org/10.1016/S0003-2670(00)01115-6
- Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International journal of forecasting, 22(4), 679-688.
- Jiang, X., Kang, S., Tong, L., & Li, F. (2016). Modification of evapotranspiration model based on effective resistance to estimate evapotranspiration of maize for seed production in an arid region of northwest China. Journal of Hydrology, 538, 194-207. doi:https://doi.org/10.1016/j.jhydrol.2016.04.002
- Jung, M., Reichstein, M., & Bondeau, A. (2009). Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6(10), 2001-2013. doi:https://10.5194/bg-6-2001-2009
- Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., ..., & Zhang, K. (2010). Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467(7318), 951-954. doi:10.1038/nature09396
- Kalma, J. D., McVicar, T. R., & McCabe, M. F. (2008). Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data. Surveys in Geophysics, 29(4), 421-469. doi:https://10.1007/s10712-008-9037-z
- Kalteh, A. M., & Hjorth, P. (2009). Imputation of missing values in precipitation-runoff process database. Hydrology Research, 40. doi:https://10.2166/nh.2009.001
- Keshtegar, B., Kisi, O., Ghohani Arab, H., & Zounemat-Kermani, M. (2018). Subset modeling basis ANFIS for prediction of the reference evapotranspiration. Water resources management, 32, 1101-1116.
- Krzywinski, M., & Altman, N. (2015). Multiple linear regression: when multiple variables are associated with a response, the interpretation of a prediction equation is seldom simple. Nature Methods, 12, 1103. doi:https://doi.org/10.1038/nmeth.3665
- Leuning, R., Zhang, Y. Q., Rajaud, A., Cleugh, H., & Tu, K. (2008). A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation. Water Resources Research, 44(10). doi:https://doi.org/10.1029/2007WR006562
- Little, T., Thompson, B., Coxe, S., Woods, C., von Eye, A., Buskirk, T., ..., & Wang, L. (2013). The Oxford Handbook of Quantitative Methods in Psychology: Vol. 2: Statistical Analysis. doi:https://10.1093/oxfordhb/9780199934898.001.0001
- Maeda, E. E., Wiberg, D. A., & Pellikka, P. K. E. (2011). Estimating reference evapotranspiration using remote sensing and empirical models in a region with limited ground data availability in Kenya. Applied Geography, 31(1), 251-258. doi:https://doi.org/10.1016/j.apgeog.2010.05.011
- Mahesh Chand, S., Shivam, P., Sanjay, S., Vishnu, P., & Sompal, S. (2022). Estimating seasonal reference evapotranspiration using limited weather data. Journal of Agrometeorology, 24(1), 99-102. doi:https://10.54386/jam.v24i1.786
- Malik, A., Saggi, M. K., Rehman, S., Sajjad, H., Inyurt, S., Bhatia, A. S., ..., & Yaseen, Z. M. (2022). Deep learning versus gradient boosting machine for pan evaporation prediction. Engineering Applications of Computational Fluid Mechanics, 16(1), 570-587. doi:https://
- Martí, P., González-Altozano, P., López-Urrea, R., Mancha, L. A., & Shiri, J. (2015). Modeling reference evapotranspiration with calculated targets. Assessment and implications. Agricultural water management, 149, 81-90. doi:https://doi.org/10.1016/j.agwat.2014.10.028
- Martí, P., López-Urrea, R., Mancha, L. A., González-Altozano, P., & Román, A. (2024). Seasonal assessment of the grass reference evapotranspiration estimation from limited inputs using different calibrating time windows and lysimeter benchmarks. Agricultural water management, 300, 108903. doi:https://doi.org/10.1016/j.agwat.2024.108903
- McCuen, R., Knight, Z., & Cutter, A. (2006). Evaluation of the Nash–Sutcliffe Efficiency Index. Journal of Hydrologic Engineering-J HYDROL ENG, 11. doi:10.1061/(ASCE)1084-0699(2006)11:6(597)
- Mehdizadeh, S., Behmanesh, J., & Khalili, K. (2017). Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration. Computers and Electronics in Agriculture, 139, 103-114.
- Mendes Reis, M., Silva, A., Junior, J., Tuffi, S., Azevedo, A., & Lopes, É. (2019). Empirical and learning machine approaches to estimating reference evapotranspiration based on temperature data. Computers and Electronics in Agriculture, 165, 104937. doi:https://10.1016/j.compag.2019.104937
- Monteith, J. L. (1965). Evaporation and environment. Paper presented at the Symposia of the society for experimental biology.
- Moran, M. S., Rahman, A. F., Washburne, J. C., Goodrich, D. C., Weltz, M. A., & Kustas, W. P. (1996). Combining the Penman-Monteith equation with measurements of surface temperature and reflectance to estimate evaporation rates of semiarid grassland. Agricultural and Forest Meteorology, 80(2), 87-109. doi:https://doi.org/10.1016/0168-1923(95)02292-9
- Mu, Q., Heinsch, F. A., Zhao, M., & Running, S. W. (2007). Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment, 111(4), 519-536. doi:https://doi.org/10.1016/j.rse.2007.04.015
- Mu, Q., Zhao, M., & Running, S. W. (2011). Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment, 115(8), 1781-1800. doi:https://doi.org/10.1016/j.rse.2011.02.019
- Muñoz Sabater, J., Dutra, E., Agusti-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., ..., & Thépaut, J. N. (2021). ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth System Science Data, 13, 4349-4383. doi:https://10.5194/essd-13-4349-2021
- Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10(3), 282-290. doi:https://doi.org/10.1016/0022-1694(70)90255-6
- Negin, S., & Gholmohamadi, M. H. (2023). Comparison of machine learning models for estimating reference evapotranspiration using satellite and ground data. Paper presented at the 13th International Congress on Civil Engineering. https://civilica.com/doc/1853201
- Nema, M. K., Khare, D., & Chandniha, S. K. (2017). Application of artificial intelligence to estimate the reference evapotranspiration in sub-humid Doon valley. Applied Water Science, 7, 3903-3910.
- Niasati, Z., Ebadi, H., & Kiani, A. (2021). Estimation of reference evapotranspiration using remote sensing data in Hamedan-Bahar Plain. Iranian Water Researches Journal, 15(4), 45-58. doi:https://10.22034/iwrj.2021.11165
- Nishida, K., Nemani, R. R., Running, S. W., & Glassy, J. M. (2003). An operational remote sensing algorithm of land surface evaporation. Journal of Geophysical Research: Atmospheres, 108(D9). doi:https://doi.org/10.1029/2002JD002062
- Noghankar, H., Raeini, M., Gholami Sefidkouhi, M. A., & Mobini, M. (2023). Prediction of daily evapotranspiration images of rice using machine learning. Iranian Journal of Soil and Water Research, 53(12), 2793-2807. doi:https://10.22059/ijswr.2022.350978.669391
- Nolan, B. T., Fienen, M. N., & Lorenz, D. L. (2015). A statistical learning framework for groundwater nitrate models of the Central Valley, California, USA. Journal of Hydrology, 531, 902-911. doi:https://doi.org/10.1016/j.jhydrol.2015.10.025
- Nouri-Khajehbolagh, R., Khaledian, M., & Kavoosi-Kalashami, M. (2020). Comparison of Water Productivity Indicators for Major Crops in Ardabil Plain. Iranian Journal of Irrigation & Drainage, 14(3), 894-904.
- Organization, W. M. (2008). Manual on Low-flow Estimation and Prediction: World Meteorological Organization.
- Peng, L., Zeng, Z., Wei, Z., Chen, A., Wood, E. F., & Sheffield, J. (2019). Determinants of the ratio of actual to reference evapotranspiration. Global Change Biology, 25(4), 1326-1343. doi:https://doi.org/10.1111/gcb.14577
- Penman, H. L., & Keen, B. A. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 193(1032), 120-145. doi:https://:10.1098/rspa.1948.0037
- Piña-Monarrez, M. R., & Ortiz-Yañez, J. F. (2015). Weibull and lognormal Taguchi analysis using multiple linear regression. Reliability Engineering & System Safety, 144, 244-253. doi:https://doi.org/10.1016/j.ress.2015.08.004
- Price, J. C. (1984). Land surface temperature measurements from the split window channels of the NOAA 7 Advanced Very High Resolution Radiometer. Journal of Geophysical Research: Atmospheres, 89(D5), 7231-7237. doi:https://doi.org/10.1029/JD089iD05p07231
- Rajput, J., Singh, M., Lal, K., Khanna, M., Sarangi, A., Mukherjee, J., & Singh, S. (2022). Performance evaluation of soft computing techniques for forecasting daily reference evapotranspiration. Journal of Water and Climate Change, 14(1), 350-368. doi:https://10.2166/wcc.2022.385
- Rasoulzadeh, A., & Ghoorabjiri, M. (2014). Comparing hydraulic properties of different forest floors. Hydrological Processes, 28. doi:https://10.1002/hyp.10006
- Rasoulzadeh, A., & Yaghoubi, A. (2014). Inverse modeling approach for determining soil hydraulic properties as affected by application of cattle manure. International Journal of Agricultural and Biological Engineering, 7, 27-35. doi:https://10.3965/j.ijabe.20140702.004
- Rodrigues, G. C., & Braga, R. P. (2021). Estimation of Daily Reference Evapotranspiration from NASA POWER Reanalysis Products in a Hot Summer Mediterranean Climate. Agronomy, 11(10), 2077.
- Roerink, G. J., Su, Z., & Menenti, M. (2000). S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25(2), 147-157. doi:https://doi.org/10.1016/S1464-1909(99)00128-8
- Ruiz-Aĺvarez, M., Gomariz-Castillo, F., & Alonso-Sarría, F. (2021). Evapotranspiration Response to Climate Change in Semi-Arid Areas: Using Random Forest as Multi-Model Ensemble Method. Water, 13(2), 222. doi:https://doi.org/10.3390/w13020222
- Samanta, B., Al-Balushi, K. R., & Al-Araimi, S. A. (2003). Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection. Engineering Applications of Artificial Intelligence, 16(7), 657-665. doi:https://doi.org/10.1016/j.engappai.2003.09.006
- Sanjay, S., Mahesh Chand, S., & Sunil, G. (2021). Assessment of irrigation water requirements for different crops in central Punjab, India. Journal of Agrometeorology, 23(4), 481-484. doi:https://10.54386/jam.v23i4.183
- Saremi, M. (2015). Determination of Effective Parameters in Estimating Reference Crop Evapotranspiration Using Artificial Neural Networks (Case study: Lorestan province). Iranian Journal of Irrigation & Drainage, 9(4), 614-623. doi:https://idj.iaid.ir/article_55085.html?lang=en
- Seifi, A., & Riahi, H. (2020). Estimating daily reference evapotranspiration using hybrid gamma test-least square support vector machine, gamma test-ANN, and gamma test-ANFIS models in an arid area of Iran. Journal of Water and Climate Change, 11(1), 217-240.
- Shiri, J. (2018). Improving the performance of the mass transfer-based reference evapotranspiration estimation approaches through a coupled wavelet-random forest methodology. Journal of Hydrology, 561, 737-750. doi:https://doi.org/10.1016/j.jhydrol.2018.04.042
- Shiri, J., Sadraddini, A., Nazemi, A., Kisi, O., Landeras, G., Fakheri fard, A., & Marti, P. (2014). Generalizability of Gene Expression Programming-based approaches for estimating daily reference evapotranspiration in coastal stations of Iran. Journal of Hydrology, 508, 1-11. doi:https://10.1016/j.jhydrol.2013.10.034
- Siasar, H., & Dindarlou, A. (2020). Estimation of daily reference evapotranspiration using models of deep learning, random forest and decision tree (Case study: Sistan Plain). Iranian Water Research Journal, 14(36), 99-108.
- Singh, M., Satpute, S., Prasad, V., & Sharma, K. K. (2022). Trend analysis of temperature, rainfall, and reference evapotranspiration for Ludhiana district of Indian Punjab using non-parametric statistical methods. Arabian Journal of Geosciences, 15. doi:https://10.1007/s12517-022-09517-1
- Song, E., Zhu, X., Shao, G., Tian, L., Zhou, Y., Jiang, A., & Lu, J. (2023). Multi-Temporal Remote Sensing Inversion of Evapotranspiration in the Lower Yangtze River Based on Landsat 8 Remote Sensing Data and Analysis of Driving Factors. Remote Sensing, 15(11), 2887. doi:https://doi.org/10.3390/rs15112887
- Steel, R. G. D., & Torrie, J. H. (1960). Principles and procedures of statistics.
- Suleiman, A. A., & Hoogenboom, G. (2007). Comparison of Priestley-Taylor and FAO-56 Penman-Monteith for Daily Reference Evapotranspiration Estimation in Georgia. Journal of Irrigation and Drainage Engineering, 133(2), 175-182. doi:https://10.1061/(ASCE)0733-9437(2007)133:2(175)
- Thornthwaite, C. W. (1948). An Approach Toward a Rational Classification of Climate. Soil Science, 66, 55-94.
- Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly, B., ..., & Papale, D. (2016). Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences, 13(14), 4291-4313. doi:https://10.5194/bg-13-4291-2016
- Vapnik, V. (2013). The nature of statistical learning theory: Springer science & business media.
- Vishwakarma, D., Pandey, K., Kaur, a., Kushwaha, N. L., Kumar, R., Ali, R., ..., & Kuriqi, A. (2021). Methods to estimate evapotranspiration in humid and subtropical climate conditions. Agricultural water management, 261. doi:https://10.1016/j.agwat.2021.107378
- Wang, L., Kisi, O., Hu, B., Bilal, M., Zounemat-Kermani, M., & Li, H. (2017). Evaporation modelling using different machine learning techniques. International Journal of Climatology, 37(S1), 1076-1092. doi:https://doi.org/10.1002/joc.5064
- Wu, L., & Fan, J. (2019). Comparison of neuron-based, kernel-based, tree-based and curve-based machine learning models for predicting daily reference evapotranspiration. PLOS ONE, 14(5), e0217520. doi:https://10.1371/journal.pone.0217520
- Zhang, K., Pan, S.-m., Zhang, W., Xu, Y., Cao, L., Hao, Y.-P., & Wang, Y. (2015). Influence of climate change on reference evapotranspiration and aridity index and their temporal-spatial variations in the Yellow River Basin, China, from 1961 to 2012. Quaternary International, 380. doi:https://10.1016/j.quaint.2014.12.037
|