
تعداد نشریات | 162 |
تعداد شمارهها | 6,623 |
تعداد مقالات | 71,542 |
تعداد مشاهده مقاله | 126,884,624 |
تعداد دریافت فایل اصل مقاله | 99,924,817 |
Sustainable Iron Recovery and Management Strategies for the Tailings of the Mohammad Abad Copper Flotation Plant, Iran | ||
International Journal of Mining and Geo-Engineering | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 01 بهمن 1403 | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/ijmge.2025.378649.595174 | ||
نویسندگان | ||
Faraz Soltani* ؛ Abdolmotaleb Hajati؛ Paniz Masoodieh؛ Mohammad Saleh Ahmadi | ||
Department of Earth Science Engineering, Arak University of Technology, Arak, Iran. | ||
چکیده | ||
The tailings from mining and mineral processing have dangerous environmental effects and the reprocessing of these tailings is called as a newly emerging solution. The representative sample of the tailing dams of Mohammad Abad copper flotation plant (Markazi Province, Iran) containing 18.95% Fe2O3 was investigated for the identification and initial feasibility studies for the recovery of iron-containing minerals. Characterization studies showed that basanite, calcite, specularite and quartz minerals are the important minerals found in the tailing dam. In the beneficiation experiments of iron minerals, the gravity beneficiation experiment did not have a good yield, but with magnetic separation with an intensity of 6000 Gauss, the grade of Fe2O3 increased up to 50.06%. Performing the reverse flotation test of calcium-containing minerals in the tailings of the magnetic separation experiment decreased the CaO grade from 23.98% to 17.07% and SO3 from 14.08% to 11.52%. The results of the feasibility tests showed that it is possible to produce iron concentrate and it is not possible to completely remove calcium and sulfur by flotation method, but the tailing of the magnetic separation (final tailing) contains 28.02% SiO2, 9.51% Fe2O3, 7.12% Al2O3, 23.98% CaO, and 14.08% SO3 and the potential to be used in the cement industry. | ||
کلیدواژهها | ||
Tailing Dam؛ Copper Flotation Plant؛ Characterization؛ Iron Recovery؛ Cement Industry Feed | ||
مراجع | ||
[1] Araujo, F. S., Taborda-Llano, I., Nunes, E. B., & Santos, R. M. (2022). Recycling and reuse of mine tailings: A review of advancements and their implications. Geosciences, 12(9), 319 DOI: https://doi.org/10.3390/geosciences12090319
[2] Luthra, S., Mangla, S. K., Sarkis, J., & Tseng, M.-L. (2022). Resources melioration and the circular economy: Sustainability potentials for mineral, mining and extraction sector in emerging economies. Resources Policy, 77, 102652
[3] Marín, O. A., Kraslawski, A., & Cisternas, L. A. (2022). Estimating processing cost for the recovery of valuable elements from mine tailings using dimensional analysis. Minerals Engineering, 184, 107629 DOI: https://doi.org/10.1016/j.mineng.2022.107629
[4] Yoshizawa, S., Tanaka, M., & Shekdar, A. V., Global trends in waste generation, in Recycling, Waste Treatment and Clean Technology. 2004, TMS Mineral, Metals and Materials Publishers: Madrid, Spain. p. 1541-1552.
[5] Pappu, A., Saxena, M., & Asolekar, S. R. (2007). Solid wastes generation in India and their recycling potential in building materials. Building and environment, 42(6), 2311-2320 DOI: https://doi.org/10.1016/j.buildenv.2006.04.015
[6] Duarte, E. E. Y. (2021). Mapa Estratégico para la Diversificación de la Minería Chilena Polimetálica y sus Encadenamientos Productivos.
[7] SERNAGEOMIN. (2020, J. D. P. D. d. R. R. A., 2020, from https://www.sernageomin.cl/datos-publicos-deposito-de-relaves/.
[8] Mackay, I., Mendez, E., Molina, I., Videla, A., Cilliers, J., & Brito-Parada, P. (2018). Dynamic froth stability of copper flotation tailings. Minerals Engineering, 124, 103-107 DOI: https://doi.org/10.1016/j.mineng.2018.05.005
[9] Sirkeci, A., Gül, A., Bulut, G., Arslan, F., Onal, G., & Yuce, A. (2006). Recovery of Co, Ni, and Cu from the tailings of divrigi iron ore concentrator. Mineral Processing and Extractive Metallurgy Review, 27(2), 131-141 DOI: https://doi.org/10.1080/08827500600563343
[10] Das, S. K., Kumar, S., & Ramachandrarao, P. (2000). Exploitation of iron ore tailing for the development of ceramic tiles. Waste Management, 20(8), 725-729 DOI: https://doi.org/10.1016/S0956-053X(00)00034-9
[11] Zhang, S.-h., Xue, X., Liu, X., Duan, P., Yang, H., Jiang, T., Wang, D., & Liu, R. (2006). Current situation and comprehensive utilization of iron ore tailing resources. Journal of mining Science, 42, 403-408 DOI: https://doi.org/10.1007/s10913-006-0069-9
[12] Rao, K. H., & Narasimhan, K. (1985). Selective flocculation applied to Barsuan iron ore tailings. International Journal of Mineral Processing, 14(1), 67-75 DOI: https://doi.org/10.1016/0301-7516(85)90015-8
[13] Yuhua, W., & Jianwei, R. (2005). The flotation of quartz from iron minerals with a combined quaternary ammonium salt. International Journal of Mineral Processing, 77(2), 116-122 DOI: https://doi.org/10.1016/j.minpro.2005.03.001
[14] Song, S., Lu, S., & Lopez-Valdivieso, A. (2002). Magnetic separation of hematite and limonite fines as hydrophobic flocs from iron ores. Minerals engineering, 15(6), 415-422 DOI: https://doi.org/10.1016/S0892-6875(02)00054-7
[15] Batisteli, G. M., & Peres, A. E. (2008). Residual amine in iron ore flotation. Minerals Engineering, 21(12-14), 873-876 DOI: https://doi.org/10.1016/j.mineng.2008.04.002
[16] Das, B., Prakash, S., Das, S., & Reddy, P. (2008). Effective beneficiation of low grade iron ore through jigging operation. Journal of Minerals and Materials Characterization and Engineering, 7(01), 27 DOI: http://10.4236/jmmce.2008.71002
[17] Dworzanowski, M. (2012). Maximizing the recovery of fine iron ore using magnetic separation. Journal of the Southern African Institute of Mining and Metallurgy, 112(3), 197-202
[18] Ghasemi, S., Behnamfard, A., & Arjmand, R. (2019). Reprocessing of Sangan iron ore tailings by flotation. Journal of Mining and Environment, 10(3), 729-745 DOI: https://doi.org/10.22044/jme.2019.8137.1682
[19] Shen, H., Zhou, B., Huang, X. Y., Zhang, Y. J., & Lin, X. W. (2008). Roasting-magnetic separation and direct reduction of a refractory oolitic-hematite ore. Mining and Metallurgical Engineering, 28(5), 30-34
[20] Li, C., Sun, H., Bai, J., & Li, L. (2010). Innovative methodology for comprehensive utilization of iron ore tailings: Part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting. Journal of Hazardous Materials, 174(1-3), 71-77 DOI: https://doi.org/10.1016/j.jhazmat.2009.09.018
[21] C150/C150M-20, A. (2020). Standard specification for Portland cement. Technical Report, ASTM International, West Conshohocken, PA,
[22] Taylor, H. F., Cement chemistry. Vol. 2. 1997: Thomas Telford London.
[23] Gartner, E. (2004). Industrially interesting approaches to “low-CO2” cements. Cement and Concrete research, 34(9), 1489-1498
[24] EN, B. S. (2011). 197-1, Cement-Part 1: Composition, specifications and conformity criteria for common cements. London: European Committee For Standardisation,
[25] Xiong, D., Lu, L., & Holmes, R., Developments in the physical separation of iron ore: magnetic separation, in Iron ore. 2015, Elsevier. p. 283-307.
[26] Nekoee Motlagh, M. J., Soltani, F., & Mojeddifar, S. (2023). Iron, copper, and rare earth minerals beneficiation in an IOCG type deposit. Canadian Metallurgical Quarterly, 1-11
[27] Liu, W., Yang, J., & Xiao, B. (2009). Application of Bayer red mud for iron recovery and building material production from alumosilicate residues. Journal of hazardous materials, 161(1), 474-478 DOI: https://doi.org/10.1016/j.jhazmat.2008.03.122
[28] Yamashita, M., Harada, T., Sakai, E., & Tsuchiya, K. (2020). Influence of sulfur trioxide in clinker on the hydration heat and physical properties of Portland cement. Construction and Building Materials, 250, 118844
[29] Zhang, Y., & Zhang, X. (2008). Research on effect of limestone and gypsum on C3A, C3S and PC clinker system. Construction and building materials, 22(8), 1634-1642
[30] Miller, F., Young, G., & Von Seebach, M. (2001). Formation and techniques for control of sulfur dioxide and other sulfur compounds in Portland cement kiln systems. R&D Serial, (2460), 56
| ||
آمار تعداد مشاهده مقاله: 80 |