تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,033 |
تعداد مشاهده مقاله | 125,502,790 |
تعداد دریافت فایل اصل مقاله | 98,766,950 |
The Superiority of the EGARCH-Odd Exponentiated Skew-t Model in Predicting Financial Returns Volatility | ||
Iranian Economic Review | ||
مقاله 4، دوره 28، شماره 4، اسفند 2024، صفحه 1176-1202 اصل مقاله (922.61 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/ier.2024.346813.1007509 | ||
نویسندگان | ||
Obinna Damian Adubisi* 1؛ Ahmed Abdulkadir2؛ Chidi Emmanuel Adubisi3 | ||
1Department of Mathematics and Statistics, Federal University Wukari, Wukari, Nigeria; Department of Mathematical Sciences, Abubakar Tafawa Balewa University, Bauchi, Nigeria. | ||
2Department of Mathematical Sciences, Abubakar Tafawa Balewa University, Bauchi, Nigeria. | ||
3Department of Physics, University of Ilorin, Ilorin, Nigeria. | ||
چکیده | ||
The key point for volatility forecast is to utilize appropriate innovation conditional density. The specification of flexible innovation density is very essential given that it directly affects the accuracy of volatility prediction. In this work, a new odd exponentiated skew-t (OEST) innovation density is introduced for exponentiated generalized autoregressive conditional heteroscedasticity (EGARCH) models for modeling daily volatility of financial return series. The simulation via Monte Carlo experiment indicates that the estimators compared are asymptotically unbiased and consistent given that their biases converge to zero as the sample size increases. The maximum likelihood and maximum product of spacing procedures dominate the other procedures. The real dataset application based on the First bank Nigeria shock price index is given to show the performance of EGARCH model specified under OEST innovation density relative to normal, student-t, generalized error, skew normal, skew student-t, skew generalized error, generalized hyperbolic and Johnson reparametrized densities in terms of volatility accuracy. Overall, the empirical results show that EGARCH model with OEST innovation density generates better in-and out-of-samples performance than all the other models. | ||
کلیدواژهها | ||
EGARCH Model؛ Estimation Methods؛ Financial Returns؛ Innovations Density؛ Monte-Carlo Simulation | ||
مراجع | ||
Adubisi, O. D., Abdulkadir, A., & Chiroma, H. (2021). A Two Parameter Odd Exponentiated Skew-t Distribution with J-Shaped Hazard Rate Function. Journal of Statistical Modeling and Analytics, 3(1), 26-46.
Adubisi, O. D., Abdulkadir, A., Abbas, U. F., & Chiroma, H. (2022). Exponentiated Half-Logistic Skew-T Distribution with GARCH-Type Volatility Models. Scientific African, 16, 1-15.
Adubisi, O. D., Abdulkadir, A., & Adubisi, C. (2022). A New Hybrid Form of the Skew-t Distribution: Estimation Methods Comparison via Monte Carlo Simulation and GARCH Model Application. Data Science in Finance and Economics, 2(2), 54-79.
Adubisi, O. D., Abdulkadir, A., & Adashu, D. J. (2023). Improved Parameter Estimators for the Flexible Extended Skew-t Model with Extensive Simulations, Applications and Volatility Modeling. Scientific African, 19, e01443.
Agboola, S., Dikko, H. G., & Asiribo, O. E. (2019). Some Volatility Modeling Using New Error Innovation Distribution. International Research Journal of Applied Sciences, 1(1), 57-62.
Aldahlan, M. A. D., & Afify, A. M. (2020). The Odd Exponential Half-Logistic Exponential Distribution: Estimation Methods and Application to Engineering Data. Mathematics, 8, 1-33.
Altun, E. (2019). Two-Sided Lindley Distribution with Inference and Applications. Journal of India Society Probability Statistics, 20, 255-279.
Altun, E., Tatlidil, H., Ozel, G., & Nadarajah, S. (2018). A New Generalized Skew-t Distribution with Volatility Models. Journal of Statistical Computation and Simulation, 88(7), 1252-1272. Anderson, T. W., & Darling, D. A. (1952) Asymptotic Theory of Certain Goodness-of-fit Criteria Based on Stochastic Processes. Annals of Mathematical Statistics, 23, 193-212.
Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31, 307-327.
Brooks, C., & Burke, S. P. (2003). Information Criteria for GARCH Model Selection. The European Journal of Finance, 9(6), 557-580.
Calzolari, G., Halbleib, R., & Parrini, A. (2014). Estimating Garch-Type Models with Symmetric Stable Innovations: Indirect Inference Versus Maximum Likelihood. Computational Statistics and Data Science, 76, 158-171.
Chen, H., Zhang, J., Tao, Y., & Tan, F. (2019). Asymmetric GARCH Type Models for Asymmetric Volatility Characteristics Analysis and Wind Power Forecasting. Prot. Control Mod. Power System, 4(29), 1-12.
Cheng, R. C. H., & Amin, N. A. K. (1979). Maximum Product-of-Spacings Estimation with Applications to the Lognormal Distribution. Working Paper, Retrieved from https://www.diva-portal.org/smash/get/diva2:691979/FULLTEXT01.pdf
Cheng, R., & Amin, N. (1983). Estimating Parameters in Continuous Univariate Distributions with a Shifted Origin. Journal of the Royal Statistical Society Series B, 45(3), 394-403.
Chesneau, C., Bakouch, H. S., Ramos, P. L., & Louzada, F. (2020). The Polynomial-Exponential Distribution: A Continuous Probability Model Allowing for Occurrence of Zero Values. Communications in Statistics-Simulation and Computation, 45, 1-26.
Engle, R. F. (1982). Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50, 987-1008.
Feng, L., & Shi, Y. (2017). A Simulation Study on the Disturbances of Disturbances in the GARCH Model. Cogent Economics and Finance, 5, 1-19.
Harvey, A., & Sucarrat, G. (2013). EGARCH Models with Fat Tails, Skewness and Leverage. Computational Statistics & Data Analysis, 76, 320-338.
Harvey, A. C., & Chakravarty, T. (2008). Beta-t-(E)GARCH. Working Papers, Retrieved from https://www.repository.cam.ac.uk/handle/1810/229418
Harvey, A. C. (2013). Dynamic Models for Volatility and Heavy Tails. Journal of the Royal Statistical Society B, 33, 326-329.
Mohammed, G. T., Aduda, J. A., & Kube, A. O. (2020). Improving Forecasts of the EGARCH Model Using Artificial Neural Network and Fuzzy Inference System. Journal of Mathematics, 8, 1-14.
Nelson, D. B. (1991). Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica, 59, 347-370.
Ramos, P. L., Louzada, F., Ramos, E., & Dey, S. (2020). The Fréchet Distribution: Estimation and Application-An Overview. Journal of Statistics and Management Systems, 23(3), 549-578.
Samson, T. K., Enang, E. T., & Onwukwe, C. E. (2020a). Estimating the Parameters of GARCH Models and its Extension: Comparison between Gaussian and Non-Gaussian Innovation Distributions. Covenant Journal of Physical & Life Sciences, 8(1), 46-60.
Samson, T. K., Onwukwe, C. E., & Enang, E. T. (2020b). Modelling Volatility in Nigerian Stock Market: Evidence from Skewed Error Distributions. International Journal of Mathematical Sciences, 18(1), 42-57.
Swain, J., Venkatraman, S., & Wilson, J. (1988). Least Squares Estimation of Distribution Function in Johnson's Translation System. Journal of Statistical Computation and Simulation, 29, 271-297.
Tsay, R. S. (2010). Analysis of Financial Time Series (3rd Ed.). Hoboken: John Wiley & Sons Ltd.
Yelamanchili, R. K. (2020). Modeling Stock Market Monthly Returns Volatility Using GARCH Models under Different Distributions. International Journal of Accounting & Finance Review, 5(1), 42-50. | ||
آمار تعداد مشاهده مقاله: 27 تعداد دریافت فایل اصل مقاله: 24 |