
تعداد نشریات | 162 |
تعداد شمارهها | 6,693 |
تعداد مقالات | 72,240 |
تعداد مشاهده مقاله | 129,238,279 |
تعداد دریافت فایل اصل مقاله | 102,074,048 |
مدلسازی اراضی زهکشیشده محصول نیشکر در کشت و صنعت حکیم فارابی خوزستان با استفاده از دیدگاه پیوند آب-محیطزیست-غذا | ||
تحقیقات آب و خاک ایران | ||
مقاله 4، دوره 55، شماره 11، بهمن 1403، صفحه 2035-2055 اصل مقاله (2.25 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2024.378717.669745 | ||
نویسندگان | ||
محمد هوشمند1؛ حامد ابراهیمیان1؛ تیمور سهرابی* 1؛ حامد نوذری2؛ عبدعلی ناصری3 | ||
1گروه مهندسی آبیاری و آبادانی، دانشکده کشاورزی، دانشگاه تهران، تهران، ایران | ||
2گروه مهندسی آب، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران | ||
3گروه آبیاری و زهکشی، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران، اهواز، ایران | ||
چکیده | ||
نیشکر گیاهی است که بیشترین نیاز آبی خود را در فصل تابستان دارد که کمترین ریزشهای جوی اتفاق میافتد و نیاز به آبیاری این گیاه وجود دارد. در این پژوهش شبیهسازی و مدلسازی کشت گیاه نیشکر با دیدگاه پیوند آب – محیطزیست – غذا و با رویکرد پویایی سیستم در شرکت کشت و صنعت حکیم فارابی خوزستان انجام شد. مدل سازی این پژوهش در محیط نرم افزار Vensim انجام گردید. مدل ایجاد شده یک مدل یکپارچه و بههم پیوسته بوده که شامل بخشهای شبیهسازی آب مصرفی، تولید محصول، حجم و شوری زهاب و شوری خاک است. از اطلاعات سه سال 1395 تا 1397 برای واسنجی و از اطلاعات دو سال 1398 تا 1399 برای صحتسنجی مدل استفاده گردید. برای ارزیابی نتایج مدل از پارامترهای آماری MAE، MBE و MAPE استفاده شد. نتایج مدلسازی نشان داد که مدل در دوره واسنجی با شاخصMAE برابر با 31/6 تن بر هکتار برای عملکرد محصول، 56/53 میلیمتر برای حجم زهاب، 21/1 دسیزیمنس بر متر برای شوری زهاب و 09/0 دسیزیمنس بر متر برای شوری خاک از دقت بالایی برخوردار است. همچنین نتایج همین شاخص در دوره صحتسنجی که برابر با 04/3 تن بر هکتار برای عملکرد محصول، 76/48 میلیمتر برای حجم زهاب، 11/1 دسی زیمنس بر متر برای شوری زهاب و 04/0 دسیزیمنس بر متر برای شوری خاک بود نشان داد که مدل از دقت نسبتا بالایی در شبیهسازی شرایط موجود برخوردار است. همچنین بیشترین بهرهوری آب به میزان 75/3 کیلوگرم بر مترمکعب، در سال 1398بهدست آمد. | ||
کلیدواژهها | ||
پویایی سیستم؛ شبیه سازی؛ همبست | ||
عنوان مقاله [English] | ||
Modeling of Drained Lands of Sugarcane Crop in Hakim Farabi Khuzestan Agro-Industry Using the Perspective of Water-Environment-Food Nexus | ||
نویسندگان [English] | ||
Mohammad Hooshmand1؛ Hamed Ebrahimian1؛ Teymour Sohrabi1؛ Hamed Nozari2؛ Abd Ali Naseri3 | ||
1Department of Irrigation and Reclamation Engineering. Faculty of Agriculture, University of Tehran, Tehran, Iran | ||
2Department of Water Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran | ||
3Department of Irrigation and Drainage, Faculty of Water and Environmental Engineering, Shahid Chamran University, Ahvaz, Iran | ||
چکیده [English] | ||
Sugarcane is a plant that has the most water requirement in the summer when the least rainfall occurs, and there is a need to irrigate this plant. In this research, the simulation and modeling of sugarcane cultivation with a focus on the water-environment-food nexus, utilizing the system dynamics approach, have been conducted at the Hakim Farabi Khuzestan Agro-Industry Company. This research was modeled using Vensim software. The model is an integrated and interconnected simulation of water consumption, product production, drainage water volume, salinity, and soil salinity. The information of three years 2015 to 2017 was used for calibration and the information of two years 2018 to 2019 was used to validate the model. MAE, MBE, and MAPE statistical parameters were used to evaluate the model results. The modeling results showed that the model has high accuracy in the calibration period with an MAE index of 6.31 ton/ha for crop yield, 53.56 mm for water drainage volume, 1.21 dS/m for water drainage salinity, and 0.09 dS/m for soil salinity. Also, the results of the same index in the validation period, which were 3.04 ton/ha for crop yield, 48.76 mm for water drainage volume, 1.11 dS/m for water drainage salinity, and 0.04 dS/m for soil salinity, indicate that the model is highly accurate in simulating the existing conditions. The highest water productivity was achieved at a rate of 3.75 kg/m³ in 2019. | ||
کلیدواژهها [English] | ||
System Dynamics, Simulation, Nexus | ||
مراجع | ||
Allam, M., & Eltahir, E. (2019). Water-Energy-Food Nexus Sustainability in the Upper Blue Nile (UBN) Basin. Frontiers in Environmental Science. 7(5), 1-12. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. 1998. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 56(97), e156. Bazilian, M., Rogner, H., Howells, M., Hermann, S., Arent, D., Gielen, D. & Yumkella, K. K. (2011). Considering the energy, water and food nexus: Towards an integrated modelling approach. Energy policy, 39(12), 7896-7906. Biggs, E. M., Bruce, E., Boruff, B., Duncan, J. M., Horsley, J., Pauli, N. & Haworth, B. (2015). Sustainable development and the water–energy–food nexus: A perspective on livelihoods. Environmental Science & Policy, 54, 389-397. Campana, P. E., Lastanao, P., Zainali, S., Zhang, J., Landelius, T., & Melton, F. (2022). Towards an operational irrigation management system for Sweden with a water–food–energy nexus perspective. Agricultural Water Management, 271, 107734. Chang, Y., Li, G., Yao, Y., Zhang, L., & Yu, C. (2016). Quantifying the water-energy-food nexus: current status and trends. Energies, 9(2), 65. De Vito, R., Portoghese, I., Pagano, A., Fratino, U., & Vurro, M. (2017). An index-based approach for the sustainability assessment of irrigation practice based on the water-energy-food nexus framework. Advances in water resources, 110, 423-436. Dorenbos, J., & Kassam, AH. (1979). Yield Response to Water, Irrigation & Drainage paper No. 33. FAO, Rome. Endo, A., Tsurita, I., Burnett, K., & Orencio, P. M. (2017). A review of the current state of research on the water, energy, and food nexus. Journal of Hydrology: Regional Studies, 11, 20-30. Hailemariam, W. G., Silalertruksa, T., Gheewala, S. H., & Jakrawatana, N. (2019). Water–energy–food nexus of sugarcane production in Ethiopia. Environmental Engineering Science, 36(7), 798-807. Hamdy, A., Driouech, N., & Hmid, A. 2014. The water-energy-food security nexus in the mediterranean: challenges and opportunities. Paper presented at the 5th International scientific agricultural symposium, Jahorina, Bosnia and Herzegovina. Hoff, H. (2011). Understanding the nexus. Background paper for the Bonn 2011 Conference: The water, energy and food security nexus. Stockholm Environment Institute, Stockholm, Sweden. Jafari, J., Nazemi, A. H., Sadraddini, A. A., & Nozari, H. (2020). Simulation of quality and quantity of outflow from subsurface drains, using system dynamics. Iranian Water Research Journal, 14(37): 1-9. (In Persian) Javadi, A., Mashal, M., & Ebrahimian, H. (2015). Performance and Sensitivity Analysis of Infiltration Equations under Different Initial and Boundary Conditions in Furrow Irrigation. Water Research in Agriculture, 28(4): 787-799. (In Persian) Kitani, O. (1999). CIGR Handbook of Agricultural Engineering. Vol, V, Energy and Biomass Engineering. ASAE publication, ST Joseph, MI. Li, Y.H., & Dong, B. (1998). Real-Time irrigation scheduling model for cotton. Water and the environment: Innovative Issues in irrigation and drainage, 197-204. Lu, P., Yang, Y., Luo, W., Zhang, Y., & Jia, Z. (2023). Numerical Simulation of Soil Water–Salt Dynamics and Agricultural Production in Reclaiming Coastal Areas Using Subsurface Pipe Drainage. Agronomy, 13(2), 588. Niva, V., Cai, J., Taka, M., Kummu, M., & Varis, O. (2020). China’s sustainable water-energy-food nexus by 2030: Impacts of urbanization on sectoral water demand. Journal of Cleaner Production, 251, 119755. Nozari, H., & Azadi, S. (2021). System dynamics simulation of crop yield under different irrigation water quality and quantity. Water Practice & Technology, 16(1), 196-209. (In Persian) Nozari, H., Heydari, M., & Azadi, S. (2014). Performance and Profitability Simulation of Crops under Different Managements of Irrigation Water Using System Dynamics Approach. Water Research in Agriculture, 27(4): 565-576. (In Persian) Nozary, H., Liaghat, M., & Khayat Kholghi, M. (2009). Simulation of water and salt inflow in subsurface Drainage Systems, using system dynamics. Iranian Journal of lrrigation and drainage, 2(3): 28-39. (In Persian) Parchami-Araghi, F., Samipour, F., & Sadeghi, A. (2020). Application of SWAP Model for Modelling a Sugarcane Farming System with Controlled Subsurface Drainage. Water Research in Agriculture, 34(1), 51-64. (In Persian) Psomas, A., Dagalaki, V., Panagopoulos, Y., Konsta, D., & Mimikou, M. (2016). Sustainable agricultural water management in Pinios River basin using remote sensing and hydrologic modeling. Procedia engineering, 162, 277-283. Rahmani, M., Jahromi, S. H. M., & Darvishi, H. H. (2023). SD-DSS model of sustainable groundwater resources management using the water-food-energy security Nexus in Alborz Province. Ain Shams Engineering Journal, 14(1), 101812. Ritzema, H. P. (2006). Drainage principles and applications (No. 16). ILRI, Wageningen, Netherlands. Sadeghi, S. H., Moghadam, E. S., Delavar, M., & Zarghami, M. (2020). Application of water-energy-food nexus approach for designating optimal agricultural management pattern at a watershed scale. Agricultural Water Management, 233, 106071. Silalertruksa, T., & Gheewala, S. H. (2018). Land-water-energy nexus of sugarcane production in Thailand. Journal of cleaner production, 182, 521-528. Smidt, S. J., Haacker, E. M., Kendall, A. D., Deines, J. M., Pei, L., Cotterman, K. A., & Hyndman, D. W. (2016). Complex water management in modern agriculture: Trends in the water-energy-food nexus over the High Plains Aquifer. Science of the Total Environment, 566, 988-1001. Taghizadeh, Z., Verdinejad, V., Ebrahimian, H., & Khanmohammadi, N. (2013). Field Evaluation and Analysis of Surface Irrigation System with WinSRFR (Case Study Furrow Irrigation). Water and Soil, 26(6), 1450-1459. Wicaksono, A., & Kang, D. (2019). Nationwide simulation of water, energy, and food nexus: Case study in South Korea and Indonesia. Journal of Hydro-environment Research, 22, 70-87. Xu, H., Tian, Z., He, X., Wang, J., Sun, L., Fischer, G., & Kent, C. (2019). Future increases in irrigation water requirement challenge the water-food nexus in the northeast farming region of China. Agricultural water management, 213, 594-604. | ||
آمار تعداد مشاهده مقاله: 207 تعداد دریافت فایل اصل مقاله: 108 |