
تعداد نشریات | 162 |
تعداد شمارهها | 6,693 |
تعداد مقالات | 72,239 |
تعداد مشاهده مقاله | 129,220,740 |
تعداد دریافت فایل اصل مقاله | 102,049,579 |
ویژگیهای یک خاک آهکی و جذب کلسیم، پتاسیم و سدیم بهوسیله ذرت (Zea mays L.) با کاربرد بیوچارهای کود گوسفند و سبوس برنج | ||
تحقیقات آب و خاک ایران | ||
مقاله 14، دوره 55، شماره 11، بهمن 1403، صفحه 2209-2223 اصل مقاله (1.16 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2024.380679.669777 | ||
نویسندگان | ||
مهدی نجفی قیری* 1؛ حمیدرضا بوستانی2؛ احسان بیژن زاده3 | ||
1دانشیار بخش علوم خاک، دانشکده کشاورزی و منابع طبیعی داراب، دانشگاه شیراز | ||
2بخش علوم خاک، دانشکده کشاورزی و منابع طبیعی داراب، دانشگاه شیراز، داراب، ایران | ||
3بخش اگرواکولوژی، دانشکده کشاورزی و منابع طبیعی داراب، دانشگاه شیراز، داراب، ایران | ||
چکیده | ||
جذب متعادل کاتیونها در خاکهای آهکی میتواند تحت تأثیر غلظت بالای کلسیم و سدیم قرار گیرد و افزودن ترکیباتی مانند بیوچارها میتواند وضعیت جذب کاتیونها را پیچیدهتر کند. در تحقیق حاضر تأثیر افزودن بیوچارهای کود گوسفند و سبوس برنج در دو درجه حرارت 300 و 500 درجه سلسیوس به یک خاک آهکی بر pH، قابلیت هدایت الکتریکی، ظرفیت تبادل کاتیونی و غلظت پتاسیم، کلسیم و سدیم محلول و تبادلی خاک و رشد ذرت و جذب پتاسیم، کلسیم و سدیم مورد بررسی قرار گرفت. بیوچار کود گوسفند دارای pH، قابلیت هدایت الکتریکی، پتاسیم، کلسیم و سدیم بیشتری نسبت به بیوچار سبوس برنج بود و با افزایش درجه حرارت تولید، مقدار آنها افزایش یافت. کاربرد بیوچارهای کود گوسفند قابلیت هدایت الکتریکی (تا 4/0 دسیزیمنس بر متر) و غلظت کاتیونهای محلول را افزایش داد ولی بیوچار سبوس برنج فقط غلظت پتاسیم محلول را افزایش داد (تا 7/0 میلیمول بر لیتر). با کاربرد همه بیوچارها، نسبت کلسیم به پتاسیم کاهش یافت (از 44/4 به 97/0 تا 64/1). مقدار پتاسیم و سدیم تبادلی با کاربرد بیوچارها افزایش نشان داد (بهترتیب تا 10-5 و 5/1-5/0 میلیمول بر کیلوگرم). عملکرد ذرت با کاربرد بیوچارها از 16 تا 160 درصد افزایش یافت. کاربرد بیوچار کود گوسفند مقدار کاتیونها را در شاخساره ذرت نسبت به بیوچار سبوس برنج افزایش اما نسبت کلسیم به پتاسیم، پتاسیم به سدیم و کلسیم به سدیم را کاهش داد. بهطور کلی، بیوچارهای سبوس برنج بهدلیل شوری کمتر، پتاسیم بیشتر و سدیم کمتر و جذب متعادل کاتیونها توسط ریشه مؤثرتر از بیوچارهای کود گوسفند هستند. | ||
کلیدواژهها | ||
پتاسیم محلول؛ جذب متوازن کاتیونها؛ سدیم محلول؛ کلسیم محلول؛ نسبت کلسیم به پتاسیم | ||
عنوان مقاله [English] | ||
Soil Properties of a Calcareous Soil and Cationic Nutrient Uptake by Zea Mays L. as Influenced by Sheep Manure and Rice Husk Biochars | ||
نویسندگان [English] | ||
Mahdi Najafi-Ghiri1؛ Hamid Reza Boostani2؛ Ehsan Bijanzadeh3 | ||
1Department of Soil Science, College of Agriculture and Natural Resources of Darab, Shiraz University | ||
2Department of Soil Science, Faculty of Agriculture and Natural Resources of Darab, Shiraz University, Darab, Iran | ||
3Department of Agroecology, Faculty of Agriculture and Natural Resources of Darab, Shiraz University, Darab, Iran | ||
چکیده [English] | ||
The balanced absorption of cations in calcareous soils is influenced by the high concentrations of calcium and sodium, while the addition of amendments like biochars can further modify the cation absorption dynamics. This study evaluated the impact of adding biochars derived from sheep manure and rice husks (produced at 300°C and 500°C) to calcareous soil on various soil properties (pH, EC, CEC, and soluble and exchangeable K, Ca, and Na), as well as on corn growth and the uptake of these cations. Results indicated that sheep manure biochar exhibited higher pH, electrical conductivity (EC), and concentrations of potassium, calcium, and sodium compared to rice husk biochar, with these properties intensifying as production temperature increased. The application of sheep manure biochar raised soil EC by 0.4 dS m⁻¹ and increased soluble cation concentrations. Conversely, rice husk biochar selectively enhanced the soluble potassium concentration by 0.7 mmol L⁻¹. Both types of biochar reduced the calcium-to-potassium ratio (from 4.44 to 0.97–1.64) and increased exchangeable potassium and sodium levels (by 5– 10 mmol kg⁻¹ and 0.5–1.5 mmol kg⁻¹, respectively). Corn yield improved significantly, ranging from 16% to 160%, with biochar application. Although sheep manure biochar enhanced cation content in corn shoots compared to rice husk biochar, it decreased the calcium-to-potassium, potassium-to-sodium, and calcium-to-sodium ratios in plant tissues. Overall, rice husk biochars proved more effective than sheep manure biochars due to their lower salinity, higher potassium content, reduced sodium levels, and the promotion of a more balanced cation absorption by plant roots. | ||
کلیدواژهها [English] | ||
balanced cation uptake, calcium to potassium ratio, soluble calcium, soluble potassium, soluble sodium | ||
مراجع | ||
Abbas, T., Rizwan, M., Ali, S., Adrees, M., Zia-ur-Rehman, M., Qayyum, M. F., Ok, Y. S., & Murtaza, G. (2018). Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown on Cd-contaminated saline soil. Environmental Science and Pollution Research, 25, 25668-25680. Abdelhafez, A. A., Li, J., & Abbas, M. H. (2014). Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil. Chemosphere, 117, 66-71. Abu Zied Amin, A. E.-E. (2016). Impact of corn cob biochar on potassium status and wheat growth in a calcareous sandy soil. Communications in soil science and plant analysis, 47(17), 2026-2033. Alam, S., Kamei, S., & Kawai, S. (2003). Amelioration of manganese toxicity in young rice seedlings with potassium. Journal of Plant Nutrition, 26(6), 1301-1314. Amin, A. E.-E. A. Z. (2018). Phosphorus dynamics and corn growth under applications of corn stalks biochar in a clay soil. Arabian Journal of Geosciences, 11(14), 379. Awan, S., Ippolito, J. A., Ullman, J., Ansari, K., Cui, L., & Siyal, A. (2021). Biochars reduce irrigation water sodium adsorption ratio. Biochar, 3, 77-87. Azadi, A., & Shakeri, S. (2021). Potassium pools distribution in some calcareous soils as affected by climatic conditions, physiographic units, and some physicochemical properties in Fars Province, southern Iran. Eurasian Soil Science, 54(5), 702-715. Boostani, H. R., Hardie, A. G., & Najafi-Ghiri, M. (2020). Effect of Organic Residues and Their Derived Biochars on the Zinc and Copper Chemical Fractions and Some Chemical Properties of a Calcareous Soil. Communications in soil science and plant analysis, 51(13), 1725-1735. Boostani, H. R., Hardie, A. G., & Najafi-Ghiri, M. (2023). Chemical fractions, mobility and release kinetics of Cadmium in a light-textured calcareous soil as affected by crop residue biochars and Cd-contamination levels. Chemistry and Ecology, 1-14. Boostani, H. R., Hardie, A. G., Najafi-Ghiri, M., & Bijanzadeh, E. (2023). Investigation of interaction effects of biochars and silicon on growth and chemical composition of Zea mays L. in a Ni-polluted calcareous soil. Scientific Reports, 13(1), 19935. Boostani, H. R., Najafi-Ghiri, M., Hardie, A. G., & Khalili, D. (2019). Comparison of Pb stabilization in a contaminated calcareous soil by application of vermicompost and sheep manure and their biochars produced at two temperatures [Article]. Applied Geochemistry, 102, 121-128. https://doi.org/10.1016/j.apgeochem.2019.01.013 Butnan, S., Deenik, J. L., Toomsan, B., Antal, M. J., & Vityakon, P. (2015). Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma, 237, 105-116. Cui, L., Liu, Y., Yan, J., Hina, K., Hussain, Q., Qiu, T., & Zhu, J. (2022). Revitalizing coastal saline-alkali soil with biochar application for improved crop growth. Ecological Engineering, 179, 106594. Gaskin, J. W., Speir, R. A., Harris, K., Das, K., Lee, R. D., Morris, L. A., & Fisher, D. S. (2010). Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agronomy Journal, 102(2), 623-633. Havlin, J. L., Beaton, J. D., Tisdale, S. L., & Nelson, W. L. (2005). Soil fertility and fertilizers: An introduction to nutrient management (Vol. 515). Pearson Prentice Hall Upper Saddle River, NJ. Helmke, P. A., & Sparks, D. L. (1996). Lithium, sodium, potassium, rubidium, and cesium. Methods of Soil Analysis: Part 3 Chemical Methods, 5, 551-574. Hien, H. N., Maneepong, S., & Suraninpong, P. (2017). Effects of potassium, calcium, and magnesium ratios in soil on their uptake and fruit quality of pummelo. Journal of Agricultural Science (Toronto), 9(12), 110-121. Hossain, M. Z., Bahar, M. M., Sarkar, B., Donne, S. W., Ok, Y. S., Palansooriya, K. N., Kirkham, M. B., Chowdhury, S., & Bolan, N. (2020). Biochar and its importance on nutrient dynamics in soil and plant. Biochar, 2, 379-420. Jia, W., Wang, C., Ma, C., Wang, J., Sun, H., & Xing, B. (2019). Mineral elements uptake and physiological response of Amaranthus mangostanus (L.) as affected by biochar. Ecotoxicology and Environmental Safety, 175, 58-65. Khanmohammadi, Z., Afyuni, M., & Mosaddeghi, M. R. (2015). Effect of pyrolysis temperature on chemical and physical properties of sewage sludge biochar. Waste Management & Research, 33(3), 275-283. Kim, H.-S., Kim, K.-R., Yang, J. E., Ok, Y. S., Owens, G., Nehls, T., Wessolek, G., & Kim, K.-H. (2016). Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere, 142, 153-159. Lehmann, J., & Joseph, S. (2009). Biochar systems. Biochar for Environmental Management: Science and Technology, 147-181. Li, L., Quinlivan, P. A., & Knappe, D. R. (2002). Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution. Carbon, 40(12), 2085-2100. Marschner, H. (2011). Marschner's mineral nutrition of higher plants. Academic press. Moradi, S., Rasouli-Sadaghiani, M. H., Sepehr, E., Khodaverdiloo, H., & Barin, M. (2019). Soil nutrients status affected by simple and enriched biochar application under salinity conditions. Environmental Monitoring and Assessment, 191, 1-13. Najafi-Ghiri, M. (2010). Study of morphological and mineralogical properties and potassium status of soils of Fars province Shiraz University]. Iran. Najafi-Ghiri, M. (2024). Potassium Equilibration and Dynamics in the Soils of Iran (Vol. 1). Tehran University Press. Najafi-Ghiri, M., Abtahi, A., Owliaie, H., Hashemi, S. S., & Koohkan, H. (2011). Factors Affecting Potassium Pools Distribution in Calcareous Soils of Southern Iran. Arid Land Research and Management, 25(4), 313-327. Najafi-Ghiri, M., Boostani, H. R., Farrokhnejad, E., & Cheraghleh, A. (2024). Soil Potassium Fractionations, Release and Fixation in a Cadmium Contaminated Soil Treated with Plant Residue and Biochar. Eurasian Soil Science, 57(2), 220-232. Najafi-Ghiri, M., Boostani, H. R., & Hardie, A. G. (2022). Investigation of biochars application on potassium forms and dynamics in a calcareous soil under different moisture conditions. Archives of Agronomy and Soil Science, 68(3), 325-339. Najafi-Ghiri, M., Mirsoleimani, A., & Amin, H. (2017). Nutritional status of Washington Navel orange orchards in arid lands of southern Iran [Article]. Arid Land Res Manag, 31(4), 431-445. https://doi.org/10.1080/15324982.2017.1347587 Najafi-Ghiri, M., Mirsoleimani, A., Boostani, H. R., & Amin, H. (2022). Influence of wood vinegar and potassium application on soil properties and Ca/K ratio in citrus rootstocks. J Soil Sci Plant Nutr, 22(1), 334-344. Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In D. L. Sparks (Ed.), Methods of soil analysis. part 3—chemical methods (pp. 961-1010). Madison. Obreza, T. A., Alva, A. K., & Calvert, D. V. (1993). Citrus fertilizer management on calcareous soils. Cooperative Extension Service, University of Florida, Institute of Food and …. Poormansour, S., Razzaghi, F., & Sepaskhah, A. R. (2019). Wheat straw biochar increases potassium concentration, root density, and yield of faba bean in a sandy loam soil. Communications in soil science and plant analysis, 50(15), 1799-1810. Rasuli, F., Owliaie, H., Najafi-Ghiri, M., & Adhami, E. (2022). Effect of biochar on potassium fractions and plant-available P, Fe, Zn, Mn and Cu concentrations of calcareous soils. Arid Land Research and Management, 36(1), 1-26. Rhoades, J. D. (1996). Salinity: Electrical conductivity and total dissolved solids. In D. L. Sparks (Ed.), Methods of Soil Analysis. Part 3—Chemical Methods (pp. 417-435). Madison. Rowell, D. L. (2014). Soil Science: Methods and Applications. Routledge. Shinogi, Y., & Kanri, Y. (2003). Pyrolysis of plant, animal and human waste: physical and chemical characterization of the pyrolytic products. Bioresource technology, 90(3), 241-247. Song, W., & Guo, M. (2012). Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 94, 138-145. Staff, U. S. L. (1954). Diagnosis and improvement of saline and alkali soils. US Dept. Agr. Handbook., 6. Sumner, M. E., & Miller, W. P. (1996). Cation exchange capacity and exchange coefficients. In D. L. Sparks (Ed.), Methods of Soil Analysis. Part 3—Chemical Methods (pp. 1201-1229). Madison. Sun, Y., Gao, B., Yao, Y., Fang, J., Zhang, M., Zhou, Y., Chen, H., & Yang, L. (2014). Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chemical Engineering Journal, 240, 574-578. Thomas, G. W. (1996). Soil pH and soil acidity. In D. L. Sparks (Ed.), Methods of Soil Analysis. Part 3—Chemical Methods (pp. 475-490). Madison. Wacal, C., Ogata, N., Basalirwa, D., Sasagawa, D., Ishigaki, T., Handa, T., Kato, M., Tenywa, M. M., Masunaga, T., & Yamamoto, S. (2019). Imbalanced soil chemical properties and mineral nutrition in relation to growth and yield decline of sesame on different continuously cropped upland fields converted paddy. Agronomy, 9(4), 184. Wacal, C., Ogata, N., Basalirwa, D., Sasagawa, D., Masunaga, T., Yamamoto, S., & Nishihara, E. (2019). Growth and K nutrition of sesame (Sesamum indicum L.) seedlings as affected by balancing soil exchangeable cations Ca, Mg, and K of continuously monocropped soil from upland fields converted paddy. Agronomy, 9(12), 819. Yang, X., Liu, J., McGrouther, K., Huang, H., Lu, K., Guo, X., He, L., Lin, X., Che, L., & Ye, Z. (2016). Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environmental Science and Pollution Research, 23, 974-984. Zhao, W., Zhou, Q., Tian, Z., Cui, Y., Liang, Y., & Wang, H. (2020). Apply biochar to ameliorate soda saline-alkali land, improve soil function and increase corn nutrient availability in the Songnen Plain. Science of the Total Environment, 722, 137428. | ||
آمار تعداد مشاهده مقاله: 114 تعداد دریافت فایل اصل مقاله: 61 |