
تعداد نشریات | 163 |
تعداد شمارهها | 6,761 |
تعداد مقالات | 72,822 |
تعداد مشاهده مقاله | 131,631,838 |
تعداد دریافت فایل اصل مقاله | 103,414,004 |
مدلسازی هدررفت خاک ناشی از فرسایش خندقی در مناطق فاقد آمار | ||
تحقیقات آب و خاک ایران | ||
مقاله 12، دوره 55، شماره 11، بهمن 1403، صفحه 2173-2189 اصل مقاله (2.12 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2024.381049.669782 | ||
نویسندگان | ||
بهرام چوبین* 1؛ امید رحمتی2؛ سید مسعود سلیمانپور3؛ صمد شادفر4؛ احمد نجفی ایگدیر5 | ||
1بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی اصفهان، سازمان تحقیقات، آموزش و ترویج کشاورزی، | ||
2بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی کردستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، | ||
3بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، شیراز، | ||
4پژوهشکده حفاظت خاک و آبخیزداری، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران | ||
5بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی آذربایجان غربی، سازمان تحقیقات، آموزش و ترویج کشاورزی، | ||
چکیده | ||
فرسایش خندقی بهعنوان یکی از مخربترین شکل تخریب زمین و هدررفت خاک در سطح جهانی مطرح میباشد. باتوجه به زمانبر و هزینهبر بودن پایش میدانی، این پژوهش به دنبال مدلسازی و برآورد حجم خاک از دست رفته بهوسیله آن در حوزه آبخیز چوپانلو در استان آذربایجان غربی بود. به این منظور، ابتدا پایش میدانی جهت شناسایی خندقها انجام شد و سپس به منظور خوشهبندی خندقها و تعیین خندقهای منتخب، لایههای رقومی عوامل تأثیرگذار بر گسترش خندقها از جمله عوامل توپوگرافی (ارتفاع، شیب، جهت، انحنای سطح و شاخص موقعیت شیب نسبی)، پوشش گیاهی، کاربری اراضی، سنگشناسی و هیدرواقلیم (فاصله از جریان، تراکم زهکشی، شاخص رطوبت توپوگرافی، بارش سالیانه و فراوانی بارشهای سنگین) تهیه شدند. سپس حجم خاک از دست رفته ناشی از فرسایش خندقی در طی سه سال 1400-1402 برای خندقهای منتخب به عنوان متغیر وابسته در عرصه اندازهگیری شد. مدلسازی در این پژوهش با استفاده از سه مدل جنگل تصادفی، ماشین بردار پشتیبان و شبکه عصبی مصنوعی و با رویکرد اعتبارسنجی متقاطع صورت پذیرفت. نتایج فرمول کوکران نشان داد که از بین 67 مورد خندق شناسایی شده در عرصه تعداد 58 مورد حداقل نمونه لازم میباشند که این تعداد خندق منتخب پس از خوشهبندی از بین سه خوشه شناسایی شده انتخاب شدند. مقدار فرسایش خالص سالانه خاک ناشی از خندقهای منتخب (58 مورد) بهترتیب برابر با 172، 196 و 208 تن در طی سالهای 1400، 1401 و 1402 میباشد. نتایج نشان داد که مدل جنگل تصادفی عملکرد خوب، مدل ماشین بردار پشتیبان عملکرد متوسط و مدل شبکه عصبی عملکرد ضعیفی در مدلسازی داشتند. | ||
کلیدواژهها | ||
حوزه آبخیز چوپانلو؛ فرسایش خندقی؛ مدلسازی؛ هدررفت خاک؛ یادگیری ماشین | ||
عنوان مقاله [English] | ||
Modeling soil loss due to gully erosion in the data-scarce regions | ||
نویسندگان [English] | ||
Bahram Choubin1؛ Omid Rahmati2؛ Seyed Masoud Soleimanpour3؛ Samad Shadfar4؛ Ahmad Najafi Eigdir5 | ||
1Department of Soil Conservation and Watershed Management Research, Isfahan Agricultural and Natural Resources Research and Education Center, AREEO, Isfahan, Iran | ||
2Department of Soil Conservation and Watershed Management Research, Kurdistan Agricultural and Natural Resources Research and Education Center, AREEO, Sanandaj, Iran | ||
3Department of Soil Conservation and Watershed Management Research, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Shiraz, Iran | ||
4Soil Conservation and Watershed Management Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran | ||
5Department of Soil Conservation and Watershed Management Research, West Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Urmia, Iran | ||
چکیده [English] | ||
Gully erosion is recognized as a detrimental form of land degradation and soil loss worldwide. Considering the time-consuming and costly nature of field monitoring, this research aimed to develop models for estimating the volume of soil lost due to gully erosion in the Choopanlu watershed, located in West Azerbaijan province, Iran. The study commenced with field monitoring to identify gullies in the area. Following this, digital layers of factors influencing gully erosion were prepared to facilitate gully clustering and selection. These factors included topographical characteristics (elevation, slope, aspect, surface curvature, and relative slope position index), vegetation, land use, soil, lithology, and hydroclimate indicators (distance from stream, drainage density, topographic wetness index, annual precipitation, and frequency of heavy rainfall events). Subsequently, the volume of soil lost due to gully erosion during the three-year period (2021-2023) was measured as the dependent variable for the selected gullies through field observations. In this study, three machine learning models including random forest (RF), support vector machine (SVM), and artificial neural network (ANN) were employed using a cross-validation approach. Cochran's formula results indicated that among the 67 identified gullies in the field, a minimum sample size of 58 gullies was required. Following clustering, this number of selected gullies was chosen from the three identified clusters. The annual soil erosion caused by the selected gullies (i.e., 58 gullies) was estimated to be 172 tons in 2021, 196 tons in 2022, and 208 tons in 2023. According to the modeling results, it can be inferred that the RF model demonstrated the best performance, followed by the SVM model with moderate performance, and the ANN model exhibiting the poorest performance in modeling soil loss due to gully erosion. | ||
کلیدواژهها [English] | ||
Choopanlu watershed, Gully erosion, Machine learning, Modeling, Soil loss | ||
مراجع | ||
Ait Naceur, H., Abdo, H. G., Igmoullan, B., Namous, M., Alshehri, F., & A Albanai, J. (2024). Implementation of random forest, adaptive boosting, and gradient boosting decision trees algorithms for gully erosion susceptibility mapping using remote sensing and GIS. Environmental Earth Sciences, 83(3), 121. https://doi.org/10.1007/s12665-024-11424-5. Avand, M., Janizadeh, S., Naghibi, S. A., Pourghasemi, H. R., Khosrobeigi Bozchaloei, S., & Blaschke, T. (2019). A comparative assessment of random forest and k-nearest neighbor classifiers for gully erosion susceptibility mapping. Water, 11(10), 2076. https://doi.org/10.3390/w11102076. Casalí, J., Loizu, J., Campo, M. A., De Santisteban, L. M., & Álvarez-Mozos, J. (2006). Accuracy of methods for field assessment of rill and ephemeral gully erosion. Catena, 67(2), 128-138. https://doi.org/10.1016/j.catena.2006.03.005. Chuma, G. B., Mugumaarhahama, Y., Mond, J. M., Bagula, E. M., Ndeko, A. B., Lucungu, P. B., ... & Schmitz, S. (2023). Gully erosion susceptibility mapping using four machine learning methods in Luzinzi watershed, eastern Democratic Republic of Congo. Physics and Chemistry of the Earth, Parts A/B/C, 129, 103295. https://doi.org/10.1016/j.pce.2022.103295. Cochran, W.G., 1977. Sampling techniques. 3rd edn. (New York: John Wiley & Sons). Dong, Y., Wu, Y., Qin, W., Guo, Q., Yin, Z., & Duan, X. (2019). The gully erosion rates in the black soil region of northeastern China: Induced by different processes and indicated by different indexes. Catena, 182, 104146. https://doi.org/10.1016/j.catena.2019.104146. Dube, F., Nhapi, I., Murwira, A., Gumindoga, W., Goldin, J., & Mashauri, D. A. (2014). Potential of weight of evidence modelling for gully erosion hazard assessment in Mbire District–Zimbabwe. Physics and chemistry of the Earth, Parts A/B/C, 67, 145-152. https://doi.org/10.1016/j.pce.2014.02.002. Garosi, Y., Sheklabadi, M., Pourghasemi, H. R., Besalatpour, A. A., Conoscenti, C., & Van Oost, K. (2018). Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping. Geoderma, 330, 65-78. https://doi.org/10.1016/j.geoderma.2018.05.027. Gayen, A., Pourghasemi, H. R., Saha, S., Keesstra, S., & Bai, S. (2019). Gully erosion susceptibility assessment and management of hazard-prone areas in India using different machine learning algorithms. Science of the total environment, 668, 124-138. https://doi.org/10.1016/j.scitotenv.2019.02.436. Genuer, R., Poggi, J. M., & Tuleau-Malot, C. (2010). Variable selection using random forests. Pattern recognition letters, 31(14), 2225-2236. https://doi.org/10.1016/j.patrec.2010.03.014. Gornami, R., & Shadfar, S. (2018). Application of the GIS in the Determination of Susceptible Areas to Gully Erosion Using the Analytic Network Process (ANP). Watershed Management Research Journal, 31(4), 58-68. https://doi.org/10.22092/wmej.2018.121633.1112. (inPersian) Hasanuzzaman, M., Adhikary, P. P., & Shit, P. K. (2024). Gully erosion susceptibility mapping and prioritization of gully-dominant sub-watersheds using machine learning algorithms: Evidence from the Silabati River (tropical river, India). Advances in Space Research, 73(3), 1653-1666. https://doi.org/10.1016/j.asr.2023.10.051. Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural networks, 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8. Jie, C., Jing-Zhang, C., Man-Zhi, T., & Zi-tong, G. (2002). Soil degradation: a global problem endangering sustainable development. Journal of Geographical Sciences, 12, 243-252. https://doi.org/10.1007/BF02837480. Kheradmand, H. R., & Soleimanpour, S. M. (2016). Longitudinal progress prediction of gully erosion with FAO model (Case study: a part of Abdan watershed, Bushehr province, South of Iran). International Journal of Biology Pharmacy and Allied Sciences, 5(2), 151-155. Kuhn, M. (2015). Caret: classification and regression training. Astrophysics Source Code Library, ascl-1505. Martins, B., Pinheiro, C., Nunes, A., Bento-Gonçalves, A., & Hermenegildo, C. (2024). Geo-environmental factors controlling gully distribution at the local scale in a Mediterranean environment. Catena, 236, 107712. https://doi.org/10.1016/j.catena.2023.107712. Mfondoum, A. H. N., Nguet, P. W., Seuwui, D. T., Mfondoum, J. V. M., Ngenyam, H. B., Diba, I., ... & Beni, L. M. (2023). Stepwise integration of analytical hierarchy process with machine learning algorithms for landslide, gully erosion and flash flood susceptibility mapping over the North-Moungo perimeter, Cameroon. Geoenvironmental Disasters, 10(1), 22. https://doi.org/10.1186/s40677-023-00254-5. Mohammadi, S., Balouei, F., Haji, K., Khaledi Darvishan, A., & Karydas, C. G. (2021). Country-scale spatio-temporal monitoring of soil erosion in Iran using the G2 model. International Journal of Digital Earth, 14(8), 1019-1039. https://doi.org/10.1080/17538947.2021.1919230. Mohebzadeh, H., Biswas, A., Rudra, R., & Daggupati, P. (2022). Machine learning techniques for gully erosion susceptibility mapping: a review. Geosciences, 12(12), 429. https://doi.org/10.3390/geosciences12120429. Mukai, S. (2017). Gully erosion rates and analysis of determining factors: a case study from the semi‐arid main ethiopian rift valley. Land degradation & development, 28(2), 602-615. https://doi.org/10.1002/ldr.2532. Nyssen, J., Poesen, J., Moeyersons, J., Haile, M., & Deckers, J. (2008). Dynamics of soil erosion rates and controlling factors in the Northern Ethiopian Highlands–towards a sediment budget. Earth surface processes and landforms, 33(5), 695-711. https://doi.org/10.1002/esp.1569. Pereira, P., Bogunovic, I., Muñoz-Rojas, M., & Brevik, E. C. (2018). Soil ecosystem services, sustainability, valuation and management. Current Opinion in Environmental Science & Health, 5, 7-13. https://doi.org/10.1016/j.coesh.2017.12.003. Poesen, J., Nachtergaele, J., Verstraeten, G., & Valentin, C. (2003). Gully erosion and environmental change: importance and research needs. Catena, 50(2-4), 91-133. https://doi.org/10.1016/S0341-8162(02)00143-1. Rouhani, H., Fathabadi, A., & Baartman, J. (2021). A wrapper feature selection approach for efficient modelling of gully erosion susceptibility mapping. Progress in Physical Geography: Earth and Environment, 45(4), 580-599. https://doi.org/10.1177/0309133320979897. Shrestha, N. (2020). Detecting multicollinearity in regression analysis. American Journal of Applied Mathematics and Statistics, 8(2), 39-42. doi: 10.12691/ajams-8-2-1. Tebebu, T. Y., Abiy, A. Z., Zegeye, A. D., Dahlke, H. E., Easton, Z. M., Tilahun, S. A., ... & Steenhuis, T. S. (2010). Surface and subsurface flow effect on permanent gully formation and upland erosion near Lake Tana in the northern highlands of Ethiopia. Hydrology and Earth System Sciences, 14(11), 2207-2217. Wang, J., Zhang, Y., Deng, J., Yu, S., & Zhao, Y. (2021). Long-term gully erosion and its response to human intervention in the tableland region of the chinese loess plateau. Remote Sensing, 13(24), 5053. https://doi.org/10.3390/rs13245053. Willmott, C. J. (1981). On the validation of models. Physical geography, 2(2), 184-194. https://doi.org/10.1080/02723646.1981.10642213. Yermolaev, O., Medvedeva, R., & Poesen, J. (2022). Spatial and temporal dynamics of gully erosion in anthropogenically modified forest and forest‐steppe landscapes of the European part of Russia. Earth Surface Processes and Landforms, 47(12), 2926-2940. https://doi.org/10.1002/esp.5433. Zhang, X., Fan, J., Liu, Q., & Xiong, D. (2018). The contribution of gully erosion to total sediment production in a small watershed in Southwest China. Physical Geography, 39(3), 246-263. https://doi.org/10.1080/02723646.2017.1356114. | ||
آمار تعداد مشاهده مقاله: 303 تعداد دریافت فایل اصل مقاله: 118 |