- Warner SL. Randomized Response: A Survey Technique for Eliminating Evasive Answer Bias. Journal of the American Statistical Association. 1965;60(309):63-9.
- Abul-Ela A-LA. Randomized Response Models for Sample Surveys on Human Population: University of North Carolina, Chapel Hill; 1966.
- G. Horvitz BVS, Walt R. Simmons. The unrelated question randomized response modeld. Research Triangle Institute and -National Center for Health Statistics;1967.
- Greenberg BG, Abul-Ela A-LA, Simmons WR, Horvitz DG. The unrelated question randomized response model: Theoretical framework. Journal of the American Statistical Association. 1969;64(326):520-39.
- Moors J. Optimization of the unrelated question randomized response model. Journal of the American Statistical Association. 1971;66(335):627-9.
- Boruch RF. Assuring Confidentiality of Responses in Social Research: A Note on Strategies. The American Sociologist. 1971;6(4):308-11.
- Alavi SMR, Tajodini M. Maximum likelihood estimation of sensitive proportion using repeated randomized response techniques. Journal of Applied Statistics. 2016;43(3):563-71.
- Maddala GS. Limited-Dependent and Qualitative Variables in Econometrics. Cambridge: Cambridge University Press; 1983.
- Scheers NJ, Dayton CM. Improved estimation of academic cheating behavior using the randomized response technique. Research in Higher Education. 1987;26(1):61-9.
- Cruyff MJLF, Böckenholt U, van der Heijden PGM, Frank LE. Chapter 18 - A Review of Regression Procedures for Randomized Response Data, Including Univariate and Multivariate Logistic Regression, the Proportional Odds Model and Item Response Model, and Self-Protective Responses. In: Chaudhuri A, Christofides TC, Rao CR, editors. Handbook of Statistics. 34: Elsevier; 2016. p. 287-315.
- Blair G, Imai K, Zhou Y-Y. Design and Analysis of the Randomized Response Technique. Journal of the American Statistical Association. 2015;110(511):1304-19.
- Chang CH, Cruyff M, Giam X. Examining conservation compliance with randomized response technique analyses. Conserv Biol. 2018;32(6):1448-56.
- Chang P-C, Pho K-H, Lee S-M, Li C-S. Estimation of parameters of logistic regression for two-stage randomized response technique. Computational Statistics. 2021;36(3):2111-33.
- Hsieh S-H, Perri PF. A Logistic Regression Extension for the Randomized Response Simple and Crossed Models: Theoretical Results and Empirical Evidence. Sociological Methods & Research. 2022;51(3):1244-81.
- Halim A, Arshad IA, Alomair AM, Alomair MA. Estimation of hidden logits using several randomized response techniques. Symmetry. 2023;15(9):1636.
- Sayed KH, Cruyff MJ, van der Heijden PG. The analysis of randomized response “ever” and “last year” questions: A non-saturated Multinomial model. Behavior Research Methods. 2024;56(3):1335-48.
- Chaudhuri A, Christofides TC, Chaudhuri A, Christofides TC. Randomized response techniques to capture qualitative features. Indirect questioning in sample surveys. 2013:29-94.
- Trappmann M, Krumpal I, Kirchner A, Jann B. Item sum: a new technique for asking quantitative sensitive questions. Journal of Survey Statistics and Methodology. 2014;2(1):58-77.
- Qureshi MN, Balqees S, Hanif M. Mean estimation of scrambled responses using systematic sampling. 2022.
- Khalil S, Zhang Q, Gupta S. Mean estimation of sensitive variables under measurement errors using optional RRT models. Communications in Statistics-Simulation and Computation. 2021;50(5):1417-26.
- Tiwari KK, Bhougal S, Kumar S, Rather KUI. Using randomized response to estimate the population mean of a sensitive variable under the influence of measurement error. Journal of Statistical Theory and Practice. 2022;16(2):28.
- Gupta S, Qureshi MN, Khalil S. Variance estimation using randomized response technique. REVSTAT-Statistical Journal. 2020;18(2):165–76-–76.
- Gupta S, Zhang J, Khalil S, Sapra P. Mitigating lack of trust in quantitative randomized response technique models. Communications in Statistics-Simulation and Computation. 2024;53(6):2624-32.
- Azeem M, Ijaz M, Hussain S, Salahuddin N, Salam A. A novel randomized scrambling technique for mean estimation of a finite population. Heliyon. 2024;10(11).
- Khan M. A randomized response technique for reducing the effect of initial non-response of the regression estimator in panel surveys. 2021.
- Ahmed S, Shabbir J. On use of randomized response technique for estimating sensitive subpopulation total. Communications in Statistics-Theory and Methods. 2023;52(5):1417-30.
- Kivaranovic D, Leeb H. A (tight) upper bound for the length of confidence intervals with conditional coverage. arXiv preprint arXiv:200712448. 2024.
- Greenberg BG, Kuebler RR, Abernathy JR, Horvitz DG. Application of the Randomized Response Technique in Obtaining Quantitative Data. Journal of the American Statistical Association. 1971;66(334):243-50.
- Warner SL. The Linear Randomized Response Model. Journal of the American Statistical Association. 1971;66(336):884-8.
- Eichhorn BH, Hayre LS. Scrambled randomized response methods for obtaining sensitive quantitative data. Journal of Statistical Planning and Inference. 1983;7(4):307-16.
- Gupta S, Gupta B, Singh S. Estimation of sensitivity level of personal interview survey questions. Journal of Statistical Planning and Inference. 2002;100(2):239-47.
- Gupta S, Kalucha G, Shabbir J. A regression estimator for finite population mean of a sensitive variable using an optional randomized response model. Communications in Statistics - Simulation and Computation. 2017;46(3):2393-405.
- Singh N, Vishwakarma G, Kumar N, Singh PH. Estimation of Mean of Sensitive Variable Using Multiplicative Scramble Variable Under Measurement Error. Journal of Statistical Theory and Practice. 2022;16:46.
- Cao M, Breidt FJ, Solomon JN, Conteh A, Gavin MC. Understanding the drivers of sensitive behavior using Poisson regression from quantitative randomized response technique data. PloS one. 2018;13(9):e0204433.
- Singh S, Tracy DS. Ridge regression using scrambled responses. Metron-International Journal of Statistics. 1999:147-57.
- Strachan R, King M, Singh S. Theory and Methods: Likelihood-based Estimation of the Regression Model with Scrambled Responses. Australian & New Zealand Journal of Statistics. 1998;40(3):279-90.
- Singh S, Joarder A, King M. Regression analysis using scrambled responses. Australian Journal of Statistics. 2008;38:201-11.
- Rueda MD, Cobo B, Arcos A. Regression Models in Complex Survey Sampling for Sensitive Quantitative Variables. Mathematics [Internet]. 2021; 9(6).
- Arcos A, Rueda MdM, Singh S. A generalized approach to randomised response for quantitative variables. Quality & Quantity. 2015;49(3):1239-56.
- Fox J-P, Veen D, Klotzke K. Generalized Linear Mixed Models for Randomized Responses. Methodology. 2018;15(1):1-18.
- Yan Z, Wang J, Lai J. An Efficiency and Protection Degree-Based Comparison Among the Quantitative Randomized Response Strategies. Communications in Statistics - Theory and Methods. 2008;38(3):400-8.
- Gupta S, Mehta S, Shabbir J, Khalil S. A unified measure of respondent privacy and model efficiency in quantitative RRT models. Journal of Statistical Theory and Practice. 2018;12:506-11.
- Anthony YCK. Asking Sensitive Questions Indirectly. Biometrika. 1990;77(2):436-8.
- Arellano-Valle R, Bolfarine H, Lachos V. Skew-normal Linear Mixed Models. 2004;3.
- Arellano-Valle RB, Genton MG. On fundamental skew distributions. Journal of Multivariate Analysis. 2005;96(1):93-116.
|