
تعداد نشریات | 162 |
تعداد شمارهها | 6,623 |
تعداد مقالات | 71,544 |
تعداد مشاهده مقاله | 126,896,055 |
تعداد دریافت فایل اصل مقاله | 99,943,525 |
Development of a novel film condensation-based heat transfer model to estimate the productivity of conventional solar still | ||
Journal of Solar Energy Research | ||
دوره 9، شماره 4، دی 2024، صفحه 2102-2114 اصل مقاله (756.46 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22059/jser.2025.383742.1481 | ||
نویسندگان | ||
Ram Kumar* ؛ Dhananjay R. Mishra؛ Pankaj Dumka | ||
Department of Mechanical Engineering, Jaypee University of Engineering and Technology, A.B. Road, Guna - 473226, Madhya Pradesh (India). | ||
چکیده | ||
This manuscript describes the development of a film condensation model based on heat and mass transfer principles. The objective of the model is to estimate the amount of distillate yield derived from CSS. To verify the accuracy and effectiveness of the proposed model, experiments were performed on CSS, and the results were compared with theoretical predictions derived from the model. Moreover, a well-established Dunkle model has also been applied to check the prediction strength of the proposed theory. The observation shows that the proposed model provides a prediction for the distillate output that is substantively close to the experimental result with a deviation of only 4.0%, whereas the overall distillate yield estimated from Dunkle's model shows a significantly higher deviation of 116.8%. These results underscore the superior accuracy and reliability of the proposed film condensation-based heat transfer model, especially in comparison to the Dunkle model, in predicting the performance and distillate output of passive solar stills. | ||
کلیدواژهها | ||
Desalination؛ Conventional solar still؛ Film condensation؛ Predictive model؛ Heat transfer | ||
مراجع | ||
[1] G.N. Tiwari, A.K. Tiwari, Solar Distillation Practice for Water Desalination Systems, Anamaya, New Delhi, India, 2008. ISBN: 8188342718.
[2] A.E. Kabeel, S.A. El-Agouz, Review of researches and developments on solar stills, Desalination 276 (2011) 1–12. https://doi.org/10.1016/j.desal.2011.03.042.
[3] G.M. Ayoub, L. Malaeb, Developments in solar still desalination systems: A critical review, Crit. Rev. Environ. Sci. Technol. 42 (2012) 2078–2112. https://doi.org/10.1080/10643389.2011.574104.
[4] P. Prakash, V. Velmurugan, Parameters influencing the productivity of solar stills – A review, Renew. Sustain. Energy Rev. 49 (2015) 585–609. https://doi.org/10.1016/j.rser.2015.04.136.
[5] H. Panchal, I. Mohan, Various methods applied to solar still for enhancement of distillate output, Desalination 415 (2017) 76–89. https://doi.org/10.1016/J.DESAL.2017.04.015.
[6] H. Panchal, N. Patel, H. Thakkar, Various techniques for improvement in distillate output from active solar still: a review, Int. J. Ambient Energy 38 (2017) 209–222. https://doi.org/10.1080/01430750.2015.1076518.
[7] D. Mevada, H. Panchal, K. kumar Sadasivuni, M. Israr, M. Suresh, S. Dharaskar, H. Thakkar, Effect of fin configuration parameters on performance of solar still: A review, Groundw. Sustain. Dev. 10 (2020) 100289. https://doi.org/10.1016/j.gsd.2019.100289.
[8] H. Panchal, K. Patel, M. Elkelawy, H.A.-E. Bastawissi, A use of various phase change materials on the performance of solar still: a review, Int. J. Ambient Energy 0 (2019) 1–6. https://doi.org/10.1080/01430750.2019.1594376.
[9] A.K. Tiwari, G.N. Tiwari, Effect of water depths on heat and mass transfer in a passive solar still: in summer climatic condition, Desalination 195 (2006) 78–94. https://doi.org/10.1016/j.desal.2005.11.014.
[10] B. Jamil, N. Akhtar, Effect of specific height on the performance of a single slope solar still: An experimental study, Desalination 414 (2017) 73–88. https://doi.org/10.1016/j.desal.2017.03.036.
[11] M. Afrand, A. Karimipour, Theoretical analysis of various climatic parameter effects on performance of a basin solar still, J. Power Technol. 97 (2017) 44–51. https://api.semanticscholar.org/CorpusID:55109734.
[12] P. Dumka, D.R. Mishra, Influence of salt concentration on the performance characteristics of passive solar still, Int. J. Ambient Energy (2019) 1–11. https://doi.org/10.1080/01430750.2019.1611638.
[13] P. Dumka, D.R. Mishra, Energy and exergy analysis of conventional and modified solar still integrated with sand bed earth: Study of heat and mass transfer, Desalination 437 (2018) 15–25. https://doi.org/10.1016/j.desal.2018.02.026.
[14] P. Dumka, D.R. Mishra, Experimental investigation of modified single slope solar still integrated with earth (I) {\&} (II):Energy and exergy analysis, Energy 160 (2018) 1144–1157. https://doi.org/10.1016/J.ENERGY.2018.07.083.
[15] T. Arunkumar, A.E. Kabeel, K. Raj, D. Denkenberger, R. Sathyamurthy, P. Ragupathy, R. Velraj, Productivity enhancement of solar still by using porous absorber with bubble-wrap insulation, J. Clean. Prod. 195 (2018) 1149–1161. https://doi.org/10.1016/j.jclepro.2018.05.199.
[16] A.E.E. Kabeel, W.M. El-maghlany, Y.A.F. El-Samadony, W.M. El-maghlany, Comparative study on the solar still performance utilizing different PCM, Desalination 432 (2018) 89–96. https://doi.org/10.1016/J.DESAL.2018.01.016.
[17] A.E. Kabeel, S.A. El-agouz, R. Sathyamurthy, T. Arunkumar, Augmenting the productivity of solar still using jute cloth knitted with sand heat energy storage, Desalination 443 (2018) 122–129. https://doi.org/10.1016/j.desal.2018.05.026.
[18] D.R. Mishra, A.K. Tiwari, Effect of coal and metal chip on the solar still, J. Sci. Tech. Res. 3 (2013) 1–6. ISSN: 2278-3350.
[19] K. Khanafer, K. Vafai, A review on the applications of nanofluids in solar energy field, Renew. Energy 123 (2018) 398–406. https://doi.org/10.1016/j.renene.2018.01.097.
[20] H.S. Deshmukh, S.B. Thombre, Solar distillation with single basin solar still using sensible heat storage materials, Desalination 410 (2017) 91–98. https://doi.org/10.1016/j.desal.2017.01.030.
[21] P. Dumka, Y. Kushwah, A. Sharma, D.R. Mishra, Comparative analysis and experimental evaluation of single slope solar still augmented with permanent magnets and conventional solar still, Desalination 459 (2019). https://doi.org/10.1016/j.desal.2019.02.012.
[22] T. Rajaseenivasan, R. Prakash, K. Vijayakumar, K. Srithar, Mathematical and experimental investigation on the influence of basin height variation and stirring of water by solar PV panels in solar still, Desalination 415 (2017) 67–75. https://doi.org/10.1016/j.desal.2017.04.010.
[23] Z.M. Omara, A.S. Abdullah, T. Dakrory, Improving the productivity of solar still by using water fan and wind turbine, Sol. Energy 147 (2017) 181–188. https://doi.org/10.1016/j.solener.2017.03.041.
[24] A.E. Kabeel, R. Sathyamurthy, S.W. Sharshir, A. Muthumanokar, H. Panchal, N. Prakash, C. Prasad, S. Nandakumar, M.S. El Kady, Effect of water depth on a novel absorber plate of pyramid solar still coated with TiO 2 nano black paint, J. Clean. Prod. 213 (2019) 185–191. https://doi.org/10.1016/j.jclepro.2018.12.185.
[25] P. Dumka, D.R. Mishra, Performance evaluation of single slope solar still augmented with the ultrasonic fogger, Energy 190 (2020). https://doi.org/10.1016/j.energy.2019.116398.
[26] R. Kumar, D.R. Mishra, P. Dumka, Improving solar still performance : A comparative analysis of conventional and honeycomb pad augmented solar stills, 270 (2024). https://doi.org/10.1016/j.solener.2024.112408.
[27] P. Dumka, N. Pandey, D.R. Mishra, Journal of Solar Energy Research ( JSER ) Conventional Solar Still Augmented with Saltwater Bottles : An Experimental Study, 9 (2024) 1811–1821. https://doi.org/10.22059/jser.2024.374131.1392.
[28] S. Shoeibi, F. Jamil, S.M. Parsa, S. Mehdi, H. Kargarsharifabad, S.A.A. Mirjalily, W. Guo, H.H. Ngo, B.-J. Ni, M. Khiadani, Recent advancements in applications of encapsulated phase change materials for solar energy systems: A state of the art review, J. Energy Storage 94 (2024) 112401. https://doi.org/10.1016/j.est.2024.112401.
[29] S. Shoeibi, H. Kargarsharifabad, M. Khiadani, S.M. Parsa, S.A.A. Mirjalily, H.A. Mohammed, Techniques used to enhance condensation rate of solar desalination systems: State-of-the-art review, Int. Commun. Heat Mass Transf. 159 (2024) 108164. https://doi.org/10.1016/j.icheatmasstransfer.2024.108164.
[30] A. Hemmatian, H. Kargarsharifabad, A. Abedini Esfahlani, N. Rahbar, S. Shoeibi, Improving solar still performance with heat pipe/pulsating heat pipe evacuated tube solar collectors and PCM: An experimental and environmental analysis, Sol. Energy 269 (2024) 112371. https://doi.org/10.1016/j.solener.2024.112371.
[31] B. Khalili, H. Kargarsharifabad, N. Rahbar, A. Abedini Esfahlani, E. Jamshidi, Performance evaluation of a CGS gas heater-powered HDH desalination system using thermosyphon heat pipes: An experimental study with economic and environmental assessment, Int. Commun. Heat Mass Transf. 152 (2024) 107300. https://doi.org/10.1016/j.icheatmasstransfer.2024.107300.
[32] H.K.M.S.A.A. Ramasamy Dhivagar Shahin Shoeibi, M. Khiadani, Performance analysis of solar desalination using crushed granite stone as an energy storage material and the integration of solar district heating, Energy Sources, Part A Recover. Util. Environ. Eff. 46 (2024) 1370–1388. https://doi.org/10.1080/15567036.2023.2299693.
[33] W.A. Abdelmaksoud, Enhancing water productivity of solar still using thermal energy storage material and flat plate solar collector, Appl. Water Sci. 15 (2025). https://doi.org/10.1007/s13201-024-02340-x.
[34] M.P.R. Teles, M. Sadi, K.A.R. Ismail, A. Arabkoohsar, B.V.F. Silva, H. Kargarsharifabad, S. Shoeibi, Cooling supply with a new type of evacuated solar collectors: a techno-economic optimization and analysis, Environ. Sci. Pollut. Res. 31 (2024) 18171–18187. https://doi.org/10.1007/s11356-023-25715-0.
[35] M. Bhargva, M. Sharma, A. Yadav, N.K. Batra, R.K. Behl, Productivity Augmentation of a Solar Still with Rectangular Fins and Bamboo Cotton Wick, J. Sol. Energy Res. 8 (2023) 1410–1416. https://doi.org/10.22059/jser.2023.356414.1279.
[36] A. Farzi, R. Nameni, H. Asadollahi, Enhancement of single slope solar still using sand : the effect of sand grain size distribution, J. Sol. Energy Res. 6 (2021) 740–750. https://doi.org/10.22059/jser.2021.320642.1194.
[37] M. Gholizadeh, A. Farzi, Performance Improvement of the single slope Solar Still Using Sand, J. Sol. Energy Res. 5 (2020) 560–567. https://doi.org/10.22059/jser.2020.302120.1152.
[38] S. Ahmed, K. Mohammad, S. Bhuiya, P. Das, A. Shahriyar, A. Haque, Z. Tasnim, M. Jahan, Journal of Solar Energy Research ( JSER ) Advancements in Solar Still Water Desalination : A Comprehensive Review of Design Enhancements and Performance Optimization, 9 (2025) 2025–2061. https://doi.org/10.22059/jser.2025.382301.1464.
[39] S.A. Alamshah, M. Talebzadegan, M. Moravej, Performance Evaluation of Regular Hexagonal Pyramid Three-Dimensional Solar Desalination System: An Experimental Investigation, J. Sol. Energy Res. 9 (2024) 1914–1925. https://doi.org/10.22059/jser.2024.370071.1371.
[40] R.K. Das, A. Date, Sustainable water desalination using eductor and waste heat : A review and suggestion for future research, 603 (2025). https://doi.org/10.1016/j.desal.2025.118687.
[41] M. El-Sayed M. Essa, H.S. El-sayed, E.E. El-kholy, M. Amer, M. Elsisi, U. Sajjad, K. Hamid, H. El-sayed Awad, Developments in solar-driven desalination: Technologies, photovoltaic integration, and processes, Energy Convers. Manag. X 25 (2025). https://doi.org/10.1016/j.ecmx.2024.100861.
[42] R. V Dunkle, Solar water distillation: the roof type still and a multiple effect diffusion still, in: Int. Dev. Heat Transf. ASME, Proc. Int. Heat Transf. Part V, Univ. Color., 1961: pp. 895–902.
[43] P.I. Cooper, Digital simulation of transient solar still processes, Sol. Energy 12 (1969) 313–331. https://doi.org/10.1016/0038-092X(69)90046-2.
[44] P.I. Cooper, The maximum efficiency of single-effect solar stills, Sol. Energy 15 (1973). https://doi.org/10.1016/0038-092X(73)90085-6.
[45] B. Frick, Some new considerations about solar stills, in: Proc. Int. J. Sol. Energy, Melbourne, 1970: p. 395.
[46] N.J. K., G.N. Tiwari, M.S. Sodha, PERIODIC THEORY OF SOLAR STILL, 4 (1980) 41–57. https://doi.org/10.1002/er.4440040106.
[47] M.S. Sodha, U. Singh, A. Kumar, G.N. Tiwari, Transient analysis of solar still, Energy Convers. Manag. 20 (1980) 191–195. https://doi.org/10.1016/0196-8904(80)90033-3.
[48] W.A. Kamal, A theoretical and experimental study of the basin-type solar still under the arabian gulf climatic conditions, Sol. Wind Technol. 5 (1988) 147–157. https://doi.org/10.1016/0741-983X(88)90074-4.
[49] S. Kumar, G.N. Tiwari, Estimation of convective mass transfer in solar distillation systems, Sol. Energy 57 (1996) 459–464. https://doi.org/10.1016/S0038-092X(96)00122-3.
[50] P.T. Tsilingiris, The application and experimental validation of a heat and mass transfer analogy model for the prediction of mass transfer in solar distillation systems, Appl. Therm. Eng. 50 (2013) 422–428. https://doi.org/10.1016/j.applthermaleng.2012.07.007.
[51] T. Kiatsiriroat, S.C. Bhattacharya, P. Wibulswas, Prediction of mass transfer rates in solar stills, Energy 11 (1986) 881–886. https://doi.org/10.1016/0360-5442(86)90007-1.
[52] J.A. Clark, The steady-state performance of a solar still, Sol. Energy 44 (1990) 43–49. https://doi.org/10.1016/0038-092X(90)90025-8.
[53] D. B. Spalding, Convective Mass Transfer, Arnold, London, 1963.
[54] G.N. Tiwari, A. Tiwari, Shyam, Solar Distillation, Pergamon, Oxford, U.K, UK, 2016. https://doi.org/10.1007/978-981-10-0807-8_13.
[55] J.A. Esfahani, N. Rahbar, M. Lavvaf, Utilization of thermoelectric cooling in a portable active solar still - An experimental study on winter days, Desalination 269 (2011) 198–205. https://doi.org/10.1016/j.desal.2010.10.062.
[56] H.J.H. Brouwers, Film condensation on non-isothermal vertical plates, Int. J. Heat Mass Transf. 32 (1989) 655–663. https://doi.org/10.1016/0017-9310(89)90213-5.
[57] T.L. Bergman, A.S. Lavine, F.P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass Transfer, 8th ed., John Wiley & Sons, Hoboken, NJ, 2018. https://doi.org/10.1016/j.applthermaleng.2011.03.022.
[58] G. Biswas, S.K. Som, Introduction to Fluid Mechanics and Fluid Machines, Tata McGraw-Hill Education, 2003. ISBN: 0070702594, 9780070702592. | ||
آمار تعداد مشاهده مقاله: 186 تعداد دریافت فایل اصل مقاله: 59 |