
تعداد نشریات | 163 |
تعداد شمارهها | 6,827 |
تعداد مقالات | 73,631 |
تعداد مشاهده مقاله | 135,080,987 |
تعداد دریافت فایل اصل مقاله | 105,353,355 |
Bounds for the Varentropy of Basic Discrete Distributions and Characterization of Some Discrete Distributions | ||
Journal of Sciences, Islamic Republic of Iran | ||
دوره 35، شماره 3، آبان 2024، صفحه 233-241 اصل مقاله (633.72 K) | ||
نوع مقاله: Original Paper | ||
شناسه دیجیتال (DOI): 10.22059/jsciences.2025.379169.1007870 | ||
نویسنده | ||
Faranak Goodarzi* | ||
Department of Statistics, Faculty of Mathematical Sciences, University of Kashan, Kashan, Islamic Republic of Iran | ||
چکیده | ||
Given the importance of varentropy in information theory, and since a closed form cannot be derived for some discrete distributions, we aim to establish bounds for the varentropy of these distributions and introduce the past varentropy for discrete random variables. In this article, we first acquired lower and upper bounds for the varentropy of the Poisson, binomial, negative binomial, and hypergeometric distributions. Since the resulting upper bounds are expressed as squared logarithmic expectations, we provide an equivalent formulation using squared logarithmic difference coefficients. Similarly, we present lower bounds in terms of logarithmic difference coefficients. Furthermore, an upper bound is derived for the variance of a function of discrete reversed residual lifetime function. We also investigate inequalities involving moments of selected functions via the reversed hazard rate and characterize certain discrete distributions by the Cauchy-Schwarz inequality. | ||
کلیدواژهها | ||
Varentropy؛ Reversed hazard rate؛ Binomial transform؛ Cauchy-Schwarz inequality | ||
مراجع | ||
probabilistic uncertainty for complex networks, Science Bulletin. 2011; 56: 3677–3682.
International Symposium on Information Theory, Barcelona. 2016; 1128-1132.
logconcave densities. In C. Houdré, D. Mason, P. Reynaud-Bouret & J. Rosin ́nski (eds.), High Dimensional Probability VII. Progress in Probability, vol. 71, Cham, Springer. 2016; 45-60.
Engineering and Informational Sciences. 2022; 37(3): 852–871.
for the variance of functions of the residual life random variables, Journal of Computational and Applied
Mathematics. 2017(b); 320, 30-42.
of functions of the inactivity time, Statistics and Probability Letters. 2016; 117: 62–71.
residual varentropy, Journal of the Iranian Statistical Society. 2022; 21(2): 233–250.
testing uniformity, Journal of Statistical Computation and Simulation. 2023; 93: 2582-2599.
totics, IEEE Transactions on Information Theory. 2014; 60: 777-795.
Statistical Planning and Inference. 2001; 93: 51-69.
Information Theory. 2019; 65: 3999-4009.
Statistics-Theory and Methods. 2015; 44: 4114-4131. | ||
آمار تعداد مشاهده مقاله: 163 تعداد دریافت فایل اصل مقاله: 39 |