
تعداد نشریات | 162 |
تعداد شمارهها | 6,623 |
تعداد مقالات | 71,544 |
تعداد مشاهده مقاله | 126,896,055 |
تعداد دریافت فایل اصل مقاله | 99,943,525 |
Grid-Connected Fuel Cell Power Quality Improvement System Control Based on Phase Compensator on Capacitor Current Feedback Active Damping | ||
Journal of Solar Energy Research | ||
دوره 9، شماره 4، دی 2024، صفحه 2080-2101 اصل مقاله (1.69 M) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22059/jser.2025.380905.1453 | ||
نویسندگان | ||
Majid Hosseinpour* 1؛ Shahab Sajedi2 | ||
1Department of Electrical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran | ||
2School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland | ||
چکیده | ||
Recently, fuel cells (FC) have received attention due to their environmental benefits and applications in distributed generation systems. Voltage source inverters interconnect the FCs to the power grid. In this paper, the capacitor current feedback (CCF) method is utilized to dampen the LCL filter’s inherent resonance, and a phase compensator in the CCF path is used to compensate for the undesirable effects of the control delay of the grid-connected FC power quality improvement system. With this trick, a virtual RC network is paralleled by the filter capacitor, effectively increasing the range of the VPRR without changing the instances of sampling. To check the performance correctness of the suggested method, the design of each section is introduced for the phase compensation and the parameters of the closed-loop system under study. With this trick, the prohibited range of the LCL filter’s resonance frequency is deleted, and the limitation of the resonance frequency is removed. The results of the low-voltage grid-connected FC power quality improvement system with the suggested control method reveal that the stability of system is maintained with changes in the network impedance. Also, the injected current’s quality is very suitable even in the harmonically weak network. | ||
کلیدواژهها | ||
Renewable energy؛ Grid-tied RES؛ Phase compensator؛ Digital control delay؛ Capacitor current feedback؛ Active damping | ||
مراجع | ||
[1] Hosseinpour, M., Dastgiri, A., & Shahparasti, M. (2024). Design and Analysis of a Power Quality Improvement System for Photovoltaic Generation Based on LCL-Type Grid Connected Inverter. International Journal of Engineering, 37(2), 252-267. https://doi.org/10.5829/ije.2024.37.02b.04
[2] Hosseinpour, M., Akbari, R., & Shahparasti, M. (2024). A Robust Photovoltaic Power Conditioning System Connected to Weak Grid Through Virtual Impedance Shaping. Journal of Solar Energy Research, 9(2), 1870-1886. https://doi.org/10.22059/jser.2024.369348.1364
[3] Mirzakhani, A., & Pishkar, I. (2023). Finding the best configuration of an off-grid PV-Wind-Fuel cell system with battery and generator backup: a remote house in Iran. Journal of Solar Energy Research, 8(2), 1380-1392. https://doi.org/10.22059/jser.2023.349781.1259
[4] Hosseinpour, M., Sabetfar, T., & Shahparasti, M. (2024). Grid‐tied PEMFC power conditioning system based on capacitor voltage thorough feedback procedure in a weak and harmonics‐polluted network. Energy Science & Engineering, 12(1), 149-167. https://doi.org/10.1002/ese3.1624
[5] Kumar, L., Manoo, M. U., Ahmed, J., Arıcı, M., & Awad, M. M. (2025). Comparative techno-economic investigation of hybrid energy systems for sustainable energy solution. International Journal of Hydrogen Energy, 104, 513-526. https://doi.org/10.1016/j.ijhydene.2024.05.369
[6] Han, B., Bai, C., Lee, J. S., & Kim, M. (2018). Repetitive controller of capacitor-less current-fed dual-half-bridge converter for grid-connected fuel cell system. IEEE Transactions On Industrial Electronics, 65(10), 7841-7855. https://doi.org/10.1109/TIE.2018.2804898
[7] A Sabir, A. (2019). A PLL-free robust control scheme with application to grid-connected fuel cell DGs under balanced and unbalanced conditions. Sustainable Energy Technologies and Assessments, 31, 64-76. https://doi.org/10.1016/j.seta.2018.12.001
[8] Baltacı, K., Ertekin, D., & Bayrak, G. (2024). Design and experimental validation of an artificial neural network-SVPWM controller for a novel micro grid-tied fuel cell-based 3-phase boost inverter. International Journal of Hydrogen Energy, 52, 1247-1265. https://doi.org/10.1016/j.ijhydene.2023.10.291
[9] Rasekh, N., & Hosseinpour, M. (2020). LCL filter design and robust converter side current feedback control for grid-connected Proton Exchange Membrane Fuel Cell system. International Journal of Hydrogen Energy, 45(23), 13055-13067. https://doi.org/10.1016/j.ijhydene.2020.02.227
[10] A Mahmoudian, A., Garmabdari, R., Bai, F., Guerrero, J. M., Mousavizade, M., & Lu, J. (2024). Adaptive power-sharing strategy in hybrid AC/DC microgrid for enhancing voltage and frequency regulation. International Journal of Electrical Power & Energy Systems, 156, 109696. https://doi.org/10.1016/j.ijepes.2023.109696
[11] Aalizadeh, F., Hosseinpour, M., Dejamkhooy, A., & Shayeghi, H. (2021). Two-stage control for small-signal modeling and power conditioning of grid- connected quasi-Z-Source inverter with LCL filter for photovoltaic generation. Journal of Operation and Automation in Power Engineering, 9(3), 242-255. https://doi.org/10.22098/joape.2021.7674.1546
[12] Hosseinpour, M., Sabetfar, T., Dejamkhooy, A., & Shahparasti, M. (2023). Design and control of LCL-type grid-tied PV power conditioning system based on inverter and grid side currents double feedback. International Journal of Modelling and Simulation, 1-21. https://doi.org/10.1080/02286203.2023.2204319
[13] Rasekh, N., Hosseinpour, M., Dejamkhooy, A., & Akbarimajd, A. (2021). Robust power conditioning system based on LCL-type quasi-Y-source inverter for grid connection of photovoltaic arrays. International Journal of Automation and Control, 15(6), 692-709. https://doi.org/10.1504/IJAAC.2021.118526
[14] Rasekh, N., & Hosseinpour, M. (2020). Adequate tuning of LCL filter for robust performance of converter side current feedback control of grid connected modified–Y-source inverter. International Journal of Industrial Electronics Control and Optimization, 3(3), 365-378. https://doi.org/10.22111/ieco.2020.32122.1221
[15] Hosseinpour, M., Asad, M., & Rasekh, N. (2021). A step-by-step design procedure of a robust control design for grid-connected inverter by LCL filter in a weak and harmonically distorted grid. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 45, 843-859. https://doi.org/10.1007/s40998-021-00414-z
[16] Wang, X., Blaabjerg, F., & Loh, P. C. (2016). Grid-current-feedback active damping for LCL resonance in grid-connected voltage-source converters. IEEE Transactions on Power Electronics, 31(1), 213-223. https://doi.org/10.1109/TPEL.2015.2411851
[17] Hosseinpour, M., Seifi, E., Khorramdel, H., & Sajedi, S. (2025). Design and Analysis of a Photovoltaic Power Conditioning System Using Grid Voltage Feedforward Procedure in Weak Grid Condition. International Journal of Engineering. 38(2), 394-320. https://doi.org/10.5829/ije.2025.38.02b.05
[18] Rasekh, N., Rahimian, M. M., Hosseinpour, M., Dejamkhooy, A., & Akbarimajd, A. (2019, February). A step by step design procedure of PR controller and capacitor current feedback active damping for a LCL-type grid-tied T-type inverter. In 2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC) (pp. 612-617). https://doi.org/10.1109/PEDSTC.2019.8697853
[19] Hosseinpour, M., & Kholousi, A. (2023). Design and Analysis of LCL-type Grid-Connected PV Power Conditioning System Based on Positive Virtual Impedance Capacitor-Current Feedback Active Damping. Journal of Solar Energy Research, 8(2), 1497-1515. https://doi.org/10.22059/jser.2023.357089.1286
[20] Hosseinpour, M., & Rasekh, N. (2019). A single-phase grid-tied PV based trans-z-source inverter utilizing LCL filter and grid side current active damping. Journal of Energy Management and Technology, 3(3), 67-77. http://dx.doi.org/10.22109/jemt.2019.169380.1150
[21] Upadhyay, N., Padhy, N. P., & Agarwal, P. (2024). Grid-Current Control with Inverter-Current Feedback Active Damping for LCL Grid-Connected Inverter. IEEE Transactions on Industry Applications. 60(1), 1738 – 1749. https://doi.org/10.1109/TIA.2023.3316997
[22] Wang, B., Xu, Y., Shen, Z., Zou, J., Li, C., & Liu, H. (2017). Current control of grid-connected inverter with LCL filter based on extended-state observer estimations using single sensor and achieving improved robust observation dynamics. IEEE Transactions on Industrial Electronics, 64(7), 5428-5439. https://doi.org/10.1109/TIE.2017.2674600
[23] López-Alcolea, F. J., Molina-Martínez, E. J., Torres, A. P., Vázquez, J., & Roncero-Sánchez, P. (2023). 2DOF-based current controller for single-phase grid-connected voltage source inverter applications. Applied Energy, 342, 121179. https://doi.org/10.1016/j.apenergy.2023.121179
[24] Campos, B. F. D. A., Rolim, L. G. B., Encarnação, L. F., & Tricarico, T. C. (2023, November). Delay Compensation on Optimal Switching Vector Model Predictive Control Applied to a Grid-Forming Inverter with an Output LC Filter in an Islanded Microgrid. In 2023 15th IEEE International Conference on Industry Applications (INDUSCON) (pp. 1410-1417). https://doi.org/10.1109/INDUSCON58041.2023.10374659
[25] Huang, M., Wang, X., Loh, P. C., & Blaabjerg, F. (2016). LLCL-filtered grid converter with improved stability and robustness. IEEE Transactions on Power Electronics, 31(5), 3958-3967. https://doi.org/10.1109/TPEL.2015.2467185
[26] Pan, D., Ruan, X., Bao, C., Li, W., & Wang, X. (2014). Capacitor-current-feedback active damping with reduced computation delay for improving robustness of LCL-type grid-connected inverter. IEEE Transactions on Power Electronics, 29(7), 3414-3427. https://doi.org/10.1109/TPEL.2013.2279206
[27] Hosseinpour, M., Kholousi, A., & Poulad, A. (2022). A robust controller design procedure for LCL‐type grid‐tied proton exchange membrane fuel cell system in harmonics‐polluted network. Energy Science & Engineering, 10(10), 3798-3818. https://doi.org/10.1002/ese3.1250
[28] He, Y., Wang, X., Ruan, X., Pan, D., Xu, X., & Liu, F. (2019). Capacitor-current proportional-integral positive feedback active damping for LCL-type grid-connected inverter to achieve high robustness against grid impedance variation. IEEE Transactions on Power Electronics, 34(12), 12423-12436. https://doi.org/10.1109/TPEL.2019.2906217
[29] Chen, C., Xiong, J., Wan, Z., Lei, J., & Zhang, K. (2017). A time delay compensation method based on area equivalence for active damping of an LCL-type converter. IEEE Transactions on Power Electronics, 32(1), 762-772. https://doi.org/10.1109/TPEL.2016.2531183
[30] İnci, M. (2020). Active/reactive energy control scheme for grid-connected fuel cell system with local inductive loads. Energy, 197, 117191.
[31] Wang, X., Bao, C., Ruan, X., Li, W., & Pan, D. (2014). Design considerations of digitally controlled LCL-filtered inverter with capacitor-current-feedback active damping. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2(4), 972-984. https://doi.org/10.1109/JESTPE.2014.2350262
[32] Li, Y., Gao, J., Zhang, Z., & Wang, Q. (2024). Model-Based and Model-Free Predictive Active Damping for LCL-Type Active-Front-End Rectifiers. IEEE Transactions on Industrial Electronics, 7(10), 11754-11765. https://doi.org/10.1109/TIE.2023.3344848
[33] Zhang, L., Ruan, X., & Ren, X. (2015). Second-harmonic current reduction and dynamic performance improvement in the two-stage inverters: An output impedance perspective. IEEE Transactions on Industrial Electronics, 62(1), 394-404. https://doi.org/10.1109/TIE.2014.2331015
[34] Chen, R., Zeng, J., Huang, X., & Liu, J. (2023). An H∞ filter based active damping control strategy for grid-connected inverters with LCL filter applied to wind power system. International Journal of Electrical Power & Energy Systems, 144, 108590. https://doi.org/10.1016/j.ijepes.2022.108590
[35] Khan, D., Zhu, K., Hu, P., Waseem, M., Ahmed, E. M., & Lin, Z. (2023). Active damping of LCL-Filtered Grid-Connected inverter based on parallel feedforward compensation strategy. Ain Shams Engineering Journal, 14(3), 101902. https://doi.org/10.1016/j.asej.2022.101902
[36] Qian, W., Yin, J., & Chen, Z. (2024). Stability Comparison of Grid-Connected Inverters Considering Voltage Feedforward Control in Different Domains. Applied Sciences, 14(19), 9026. https://doi.org/10.3390/app14199026
[37] Yang, Y., Guo, X., Lu, Z., Hua, C., Castilla, M., & Blaabjerg, F. (2020). Advanced control of grid-connected inverters for proton exchange membrane fuel cell system. International Journal of Hydrogen Energy, 45(58), 33198-33207. https://doi.org/10.1016/j.ijhydene.2020.09.130
[38] Faiz, M. T., Khan, M. M., Jianming, X., Ali, M., Habib, S., Hashmi, K., & Tang, H. (2019). Capacitor voltage damping based on parallel feedforward compensation method for LCL-filter grid-connected inverter. IEEE Transactions on Industry Applications, 56(1), 837-849. https://doi.org/10.1109/TIA.2019.2951115.
[39] Bimarta, R., & Kim, K. H. (2020). A robust frequency-adaptive current control of a grid-connected inverter based on LMI-LQR under polytopic uncertainties. IEEE Access, 8, 28756-28773. https://doi.org/10.1109/ACCESS.2020.2972028. | ||
آمار تعداد مشاهده مقاله: 118 تعداد دریافت فایل اصل مقاله: 38 |