
تعداد نشریات | 162 |
تعداد شمارهها | 6,694 |
تعداد مقالات | 72,251 |
تعداد مشاهده مقاله | 129,280,961 |
تعداد دریافت فایل اصل مقاله | 102,138,747 |
توسعه مدل بهینهسازی چندهدفه تحت عدمقطعیت برای مدیریت همبست آب و انرژی در شبکه آبیاری و زهکشی سفیدرود | ||
تحقیقات آب و خاک ایران | ||
دوره 55، شماره 12، اسفند 1403، صفحه 2289-2311 اصل مقاله (2.45 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2024.378531.669747 | ||
نویسندگان | ||
مهشید احمدی پور دوگوری1؛ سمیه جنت رستمی* 2؛ افشین اشرف زاده1؛ نادر پیرمرادیان3 | ||
1گروه مهندسی آب، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران | ||
2گروه مهندسی آب، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، گیلان. | ||
3گروه مهندسی آب، دانشکده علوم کشاورزی، دانشگاه ایران، رشت، ایران | ||
چکیده | ||
این مطالعه به بررسی مدیریت بهینه منابع آب و انرژی در شبکه آبیاری و زهکشی سفیدرود در استان گیلان میپردازد. با توجه به نقش حیاتی این منابع در کشاورزی، کمبود آب و افزایش تقاضا برای غذا، نیاز به یک رویکرد یکپارچه بیشتر احساس میشود. یک مدل بهینهسازی چندهدفه تحت عدمقطعیت برای این مطالعه توسعه داده شد که شامل کمینهسازی کمبود آب کشاورزی و حداکثرسازی تولید انرژی برقابی سد مخزنی سفیدرود است. مدل توسعه یافته با استفاده از الگوریتم NSGA-II حل شد و نیازهای آبیاری برنج و چای با روش بیلان آب و خاک محاسبه گردید. نتایج نشان میدهد که کمبود آب در سطوح اطمینان مختلف متفاوت بوده و ناحیه آبیاری مرکزی بیشترین کمبود را دارد. همچنین، کشت برنج بهخصوص در ماههای خرداد و تیر با کمبود آب بیشتری مواجه است، در حالی که کشت چای از نظر کمبود آب مشکل خاصی ندارد. این تحقیق بر لزوم مدیریت بهینه منابع و برنامهریزی دقیق برای جلوگیری از کمبود آب در ماههای بحرانی تأکید کرده و نتایج آن میتواند به تصمیمگیریهای مؤثر در راستای توسعه پایدار کشاورزی کمک کند. | ||
کلیدواژهها | ||
مجموعههای فازی؛ الگوریتم NSGA-II؛ بهینهسازی؛ عدم قطعیت | ||
عنوان مقاله [English] | ||
Development of a Multi-objective Optimization Model under Uncertainty for Water and Energy nexus Management in the Sefidroud Irrigation and Drainage Network | ||
نویسندگان [English] | ||
Mahshid Ahmadipour Dogouri1؛ Somaye Janatrostami2؛ Afshin Ashrafzadeh1؛ Nader Pirmoradian3 | ||
1Department of Water Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran | ||
2Department of Water Engineering, College of Agriculture, University of Guilan, Rasht, Guilan. | ||
3Department of Water Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran | ||
چکیده [English] | ||
This study investigates the optimal management of water and energy resources in the Sefidroud irrigation and drainage network of Guilan province. Given the critical role of these resources in agriculture, along with water scarcity and increasing food demands, the need for an integrated approach is becoming more evident. A multi-objective optimization model under uncertainty was developed for this study, aiming to minimize agricultural water shortages and maximize hydropower generation from the Sefidroud reservoir dam. The developed model was solved using the NSGA-II algorithm, and the irrigation requirements for rice and tea were calculated based on the soil-water balance method. The results indicate that water shortages vary across different confidence levels, with the central irrigation zone experiencing the highest deficit. Additionally, rice cultivation, especially in June and July, faces more significant water shortages, whereas tea cultivation does not encounter major water scarcity issues. This research highlights the necessity of optimal resource management and precise planning to prevent water shortages during critical months. The findings have the potential to inform effective decision-making aimed at sustainable agricultural development. | ||
کلیدواژهها [English] | ||
fuzzy sets, NSGA-II algorithm, Optimization, Uncertainty | ||
مراجع | ||
Allen, R.G., Clemmens, A.J., Burt, C.M., Solomon, K., & O'Halloran, T. (2005). Prediction accuracy for projectwide evapotranspiration using crop coefficients and reference evapotranspiration. Journal of irrigation and drainage engineering. 131 (1):24. https://doi.org/10.1061/(ASCE)0733-9437(2005)131:1(24). Allen, R.G., Pereira, L.S., Raes, D., & Smith, M. (1998). Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56, FAO, Rome, Italy. Allen, R.G., Wright, J.L., Pruitt, W.O., Pereira, L.S., & Jensen, M.E. (2007). Water requirements. In G.J. Hoffman, R.G.Evans, M.E. Jensen, D.L. Martin, R.L. Elliot (Eds.), Design and Operation of Farm Irrigation Systems. (pp. 208–288). St Joseph, MI: ASABE. Anonymous. (2004). Rehabilitation Studies of the Sefidroud irrigation and drainage network, Gilan. Gilan Regional Water Authority, Pandam Consulting Engineers, Volume 10. (In Persian) Asaadi Mehrabani, A., Banihabib, M.E., & Roozbahany, A. (2018). Fuzzy Linear Programming Model for the Optimization of Cropping Pattern in Zarrinehroud Basin. Iran-Water Resources Research, 14(1), 13-24. (In Persian). Arizpe, N., Giampietro, M., Ramos-Martin, J. (2011). Food security and fossil energy dependence: An international comparison of the use of fossil energy in agriculture (1991–2003). Critical Reviews in Plant Sciences, 30, 45–63. https://doi.org/10.1080/07352689.2011.554352. Asaadi Mehrabani, M., Banihabib, M.E., & Roozbahany, A. (2018). Fuzzy Linear Programming Model for the Optimization of Cropping Pattern in Zarrinehroud Basin. Iran-Water Resources Research, 14(1), 13-24. Bhattarai, N., Pollack, A., Lobell, D.B., Fishman, R., Singh, B., Dar, A., & Jain, M. (2021). The impact of groundwater depletion on agricultural production in India. Environmental Research Letters, 16 (8), 085003 https://doi.org/10.1088/1748-9326/ac10de. Buko, J., Duda, J., & Makowski, A. (2021). Food Production Security in Times of a Long-Term Energy Shortage Crisis: The Example of Poland. Energies, 14, 4725. https://doi.org/10.3390/en14164725. D’Odorico, P., Davis, K.F., Rosa, L., Carr, J.A., Chiarelli, D., Dell’Angelo, J., Gephart, J., MacDonald, G.K., Seekell, D.A., Suweis, S., & Rulli, M.C. (2018). The global food-energywater nexus. Reviews of Geophysics, 56, 456–531. https://doi.org/10.1029/2017RG000591. Pirmoradian, N., & Davatgar, N. (2019). Simulating the effects of climatic fluctuations on rice irrigation water requirement using AquaCrop. Agricultural water management 213, 97-106. https://doi.org/10.1016/j.agwat.2018.10.003. Pirmoradian, N. (2018). Designing and creating the native system of water requirement of agricultural and garden plants in different climates of Iran. Soil and Water Research Institute, Agricultural Research and Training Organization, Ministry of Agriculture. (In Persian) Daher, B., Lee, S.H., Kaushik, V., Blake, J., Askariyeh, M.H., Shafiezadeh, H., Zamaripa, S., & Mohtar, R.H. (2019). Towards bridging the water gap in Texas: a waterenergy-food nexus approach. Science of The Total Environment, 647, 449–463. https://doi.org/10.1016/j.scitotenv.2018.07.398. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6, 182-197. https://doi.org/10.1109/4235.996017. Fernandez, ´J.E., Alcon, F., Diaz-Espejo, A., Hernandez-Santana, V., & Cuevas, M.V. (2020). Water use indicators and economic analysis for on-farm irrigation decision: a case study of a super high density olive tree orchard. Agricultural Water Management, 237, 106074. https://doi.org/10.1016/j.agwat.2020.106074. Fiedler, M., Nedoma, J., Ramík, J., & Rohn, J. (2006). Linear Optimization Problems with Inexact Data. Springer US. https://doi.org/10.1007/0-387-32698-7 Food and Agriculture Organization of the United Nations (FAO). (2017). Water for Sustainable Food and Agriculture: A report produced for the G20 Presidency of Germany. https://www.fao.org/3/i7959e/i7959e.pdf. Georgiou, S., Acha, S., Shah, N., & Markides, C.N. (2018). A generic tool for quantifying the energy requirements of glasshouse food production. Journal of Cleaner Production, 191, 384–399. https://doi.org/10.1016/j.jclepro.2018.03.278. Ghisellini, P., Setti, M., & Ulgiati, S. (2016). Energy and land use in worldwide agriculture: An application of life cycle energy and cluster analysis. Environment, Development and Sustainability, 18, 799–837. https://doi.org/10.1007/s10668-015-9678-2. Gholizadeh, H., Fazlollahtabar, H., & Khalilzadeh, M. (2020). A robust fuzzy stochastic programming for sustainable procurement and logistics under hybrid uncertainty using big data. Journal of Cleaner Production, 258, 120640 https://doi.org/10.1016/j. jclepro.2020.120640. Guan, X., Mascaro, G., Sampson, D., & Maciejewski, R. (2020). A metropolitan scale water management analysis of the food-energy-water nexus. Science of The Total Environment, 701, 134478 https://doi.org/10.1016/j.scitotenv.2019.134478. IEA. (2016). World Energy Outlook. International Energy Agency., Paris, France. Ji, L., Zhang, B., Huang, G., & Lu, Y. (2020). Multi-stage stochastic fuzzy random programming for food-water-energy nexus management under uncertainties. Resources, Conservation and Recycling, 155, 104665 https://doi.org/10.1016/j. resconrec.2019.104665. Ji, L., Zhang, B., Huang, G., & Lu, Y. (2020). Multi-stage stochastic fuzzy random programming for food-water-energy nexus management under uncertainties. Resources, Conservation and Recycling, 155, 104665. https://doi.org/10.1016/j.resconrec.2019.104665. Jin, S.W., Li, Y.P., & Huang, G.H. (2017). An interactive optimization model for energy systems planning associated with clean-energy development under uncertainty. International Journal of Energy Research, 41, 482–501. https://doi.org/10.1002/er.3628. Li, M., Fu, Q., Singh, V.P., Ji, Y., Liu, D., Zhang, C.L., & Li, T.X. (2019). An optimal modelling approach for managing agricultural water-energy-food nexus under uncertainty. Science of The Total Environment, 651, 1416–1434. https://doi.org/10.1016/j.scitotenv.2018.09.291. Li, Y.P., & Huang, G.H. (2011). Planning Agricultural Water Resources System Associated With Fuzzy and Random Features. Journal of the American Water Resources Association (JAWRA), 47(4), 841-860. https://doi.org/10.1111/j.1752-1688.2011.00558.x. Liu, D.D., Guo, S.L., Liu, P., Xiong, L.H., Zou, H., Tian, J., Zeng, Y.J., Shen, Y.J., & Zhang, J. Y. (2019). Optimisation of water-energy nexus based on its diagram in cascade reservoir system. Journal of Hydrology, 569, 347–358. https://doi.org/10.1016/j.jhydrol.2018.12.010. Liu, J., Li, Y., Huang, G., Suo, C., & Yin, S. (2017). An Interval Fuzzy-Stochastic Chance-Constrained Programming Based Energy-Water Nexus Model for Planning Electric Power Systems. Energies, 10, 1914. doi:10.3390/en10111914. Liu, J., Mooney, H., Hull, V., Davis, S.J., Gaskell, J., Hertel, T., Lubchenco, J., Seto, K.C., Gleick, P., Kremen, C., & Li, S.X. (2015). Systems integration for global sustainability. Science, 347 (6225), 1258832. DOI: 10.1126/science.1258832. Lv, J., Li, Y.P., Shan, B.G., Jin, S.W., & Suo, C. (2018). Planning energy-water nexus system under multiple uncertainties–A case study of Hebei province. Applied Energy, 229, 389–403. https://doi.org/10.1016/j.apenergy.2018.08.010. Namany, S., Al-Ansari, T., & Govindan, R. (2019). Optimisation of the energy, water, and food nexus for food security scenarios. Computers & Chemical Engineering, 129, 106513. https://doi.org/10.1016/j.compchemeng.2019.106513. Opejin, A.K., Aggarwal, R.M., White, D.D., Jones, J.L., Maciejewski, R., Mascaro, G., & Sarjoughian, H.S. (2020). A bibliometric analysis of food-energy-water nexus literature. Sustainability, 12 (3), 1112. https://doi.org/10.3390/su12031112. Perrone, D., Murphy, J., & Hornberger, G.M. (2011). Gaining perspective on the water-energy nexus at the community scale. Environmental Science & Technology, 45 (10), 4228–4234. https://doi.org/10.1021/es103230n. Pyrce, R. (2004). Hydrological low flow indices and their uses. Raes, D. (1982). A summary simulation model of the water budget of a cropped soil (budget). Dissertationes de Agricultura (Belgium) no 122. Ren, C., Guo, P., Tan, Q., & Zhang, L. (2017). A multi-objective fuzzy programming model for optimal use of irrigation water and land resources under uncertainty in Gansu Province, China. Journal of Cleaner Production, 164, 85-94. http://dx.doi.org/10.1016/j.jclepro.2017.06.185. Ren, C., Li, Z., & Zhang, H. (2019). Integrated multi-objective stochastic fuzzy programming and AHP method for agricultural water and land optimization allocation under multiple uncertainties. Journal of Cleaner Production, 210, 12-24. https://doi.org/10.1016/j.jclepro.2018.10.348. Sanchis, R., Díaz-Madroñero, M., López-Jiménez, P.A., & Pérez-Sánchez, M. (2019). Solution approaches for the management of the water resources in irrigation water systems with fuzzy costs. Water, 11 (12), 2432. https://doi.org/10.3390/w11122432. Sargazi, A.R. (2017). Planning and optimal allocation of water resources in the agricultural sector using fuzzy programming approach (Case study of Someh Sara city). Iran-Water Resources Research, 13(2), 74-81. Sun, J., Li, Y.P., Suo, C., & Liu, J. (2020). Development of an uncertain water-food-energy nexus model for pursuing sustainable agricultural and electric productions. Agricultural Water Management, 241, 106384. https://doi.org/10.1016/j.agwat.2020.106384. Tan, Q., & Zhang, T.Y. (2018). Robust fractional programming approach for improving agricultural water-use efficiency under uncertainty. Journal of Hydrology, 564, 1110–1119. https://doi.org/10.1016/j.jhydrol.2018.07.080. Tsolas, S.D., Karim, M.N., & Hasan, M.M.F. (2018). Optimization of water-energy nexus: a network representation-based graphical approach. Applied Energy, 224, 230–250. https://doi.org/10.1016/j.apenergy.2018.04.094. Xie, Y.L., Xia, D.X., Jib, L., & Huang, G.H. (2018). An inexact stochastic-fuzzy optimization model for agricultural water allocation and land resources utilization management under considering effective rainfall. Ecological Indicators, 92, 301-311. https://doi.org/10.1016/j.ecolind.2017.09.026. Xu, Y., Tan, J., Wang, X., Li, W., He, X., Hu, X., & Fa, Y. (2022). Synergetic management of water-energy-food nexus system and GHG emissions under multiple uncertainties: An inexact fractional fuzzy chance constraint programming method. Agricultural Water Management, 262, 107323. Yu, L., Li, Q.W., Jin, S.W., Chen, C., Li, Y.P., Fan, Y.R., & Zuo, Q.T. (2020). Coupling the two-level programming and copula for optimizing energy-water nexus system management – A case study of Henan Province. Journal of Hydrology, 586, 124832. https://doi. org/10.1016/j.jhydrol.2020.124832. Yu, L., Li, Y.P., & Huang, G.H. (2019). Planning municipal-scale mixed energy system for stimulating renewable energy under multiple uncertainties-the city of Qingdao in Shandong Province, China. Energy, 166, 1120–1133. https://doi.org/10.1016/j.energy.2018.10.157. Yu, L., Li, Y.P., & Huang, G.H. (2019). Planning municipal-scale mixed energy system for stimulating renewable energy under multiple uncertainties-the city of Qingdao in Shandong Province, China. Energy, 166, 1120–1133. https://doi.org/10.1016/j.energy.2018.10.157. Yu, G., Song, X., Wang, Q., Liu, Y., Guan, D., Yan, J., Sun, X., Zhang, L., & Wen, X. (2008). Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables. New Phytologist, 177 (4). https://doi.org/10.1111/j.1469-8137.2007.02316.x. Zhang, C., Engel, B.A., & Guo, P. (2018). An Interval-based Fuzzy Chance-constrained Irrigation Water Allocation model with double-sided fuzziness. Agricultural Water Management, 210(30), 22-31. https://doi.org/10.1016/j.agwat.2018.07.045 Zhang, C.L., Guo, S.S., Zhang, F., Engel, B.A., & Guo, P. (2019). Towards sustainable water resources planning and pollution control: Inexact joint-probabilistic double-sided stochastic chance-constrained programming model. Science of The Total Environment, 657, 73–86. https://doi.org/10.1016/j.scitotenv.2018.11.463. Zhang, F., Zhang, C.L., Yan, Z.H., Guo, S.S., Wang, Y.Z., & Guo, P. (2018). An interval nonlinear multiobjective programming model with fuzzy interval credibility constraint for crop monthly water allocation. Agricultural Water Management, 209, 123–133. https://doi.org/10.1016/j.agwat.2018.07.026. Zhang, H., Guo, S., Ren, C., & Guo, P. (2018). Integrated IMO-TSP and AHP Method for Regional Water Allocation under Uncertainty. Journal of Water Resources Planning and Management, 144(6). DOI:10.1061/(ASCE)WR.1943-5452.0000933. Zuo, Q., Wu, Q., Yu, L., Li, Y., & Fan, Y. (2021). Optimization of uncertain agricultural management considering the framework of water, energy and food. Agricultural Water Management, 253, 106907 https://doi.org/10.1016/j.agwat.2021.106907.
| ||
آمار تعداد مشاهده مقاله: 148 تعداد دریافت فایل اصل مقاله: 89 |