
تعداد نشریات | 162 |
تعداد شمارهها | 6,692 |
تعداد مقالات | 72,229 |
تعداد مشاهده مقاله | 129,179,296 |
تعداد دریافت فایل اصل مقاله | 102,007,315 |
ارزیابی پیامدهای تغییر اقلیم بر روند رویدادهای حدی و تاثیر آن بر فنولوژی درخت بادام مطالعه موردی: استان آذربایجان شرقی | ||
تحقیقات آب و خاک ایران | ||
دوره 55، شماره 12، اسفند 1403، صفحه 2351-2371 اصل مقاله (2.73 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2024.375011.669697 | ||
نویسندگان | ||
نازلی زنوزی علمداری1؛ بهروز سبحانی* 2؛ مهدی اصلاحی1؛ مسیح اله محمدی3 | ||
1گروه جغرافیای طبیعی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی، اردبیل، ایران. | ||
2گروه جغرافیای طبیعی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
3گروه جغرافیای طبیعی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی ، اردبیل، ایران | ||
چکیده | ||
رویدادهای حدی آب و هوایی، یکی از چالشهای مهم برای تولیدکنندگان محصولات کشاورزی میباشد که در حال حاضر در حال افزایش است. پیشنگری و محاسبه اثرات رویدادهای حدی بر روی محصولات باغی یکی از مهمترین بحثهای مطرح در امنیت غذایی و اقتصاد کشاورزی است. هدف از این پژوهش بررسی پیامدهای تغییر اقلیم بر روند رویدادهای حدی و تأثیر آن بر فنولوژی درخت بادام در استان آذربایجان شرقی است. جهت بررسی و پیشنگری بارندگی و دمای کمینه و بیشینه و تعیین شاخص حدی که بیشترین تأثیر را بر روی فنولوژی درخت بادام داشتند از مدلهای پروژه مقایسه جفت مدلهای اقلیمی ـ فاز 6 (CMIP6) و شبیه ساز تصحیح اریبی در دوره آتی (2021 تا 2100) در ایستگاههای تبریز، اهر، جلفا، مراغه و میانه استفاده شد. نتایج بررسی شاخصهای دمایی و بارندگی برای دورههای آتی بیانگر این مطلب بود که میانگین دمای سالانه 9/0 تا 5/4 درجه سانتیگراد تا سال 2100 افزایش خواهد یافت و خروجی بارش تا سال 2100 بیانگر این است که در سناریوی SSP5-8.5 کاهشی و در دو سناریوی SSP1-2.6 و SSP2-4.5 مقداری افزایش خواهد یافت. این نتایج نشان داد که با افزایش دادههای حدی دمایی، طول فصل رشد درخت بادام از 176 روز در دوره پایه به 156 روز در سناریوی SSP1-2.6، 150 روز در سناریو SSP2-4.5 و 146 روز در سناریو SSP5-8.5 کاهش خواهد یافت. | ||
کلیدواژهها | ||
مدل گردش عمومی؛ روند؛ فنولوژی بادام؛ CMIP6؛ سناریوهای SSP | ||
عنوان مقاله [English] | ||
Evaluating the consequences of climate change on the trend of extreme events and its impact on the phenology of almond trees, a case study: East Azarbaijan province | ||
نویسندگان [English] | ||
Nazli Zenozi Alamdari1؛ behrouz sobhani2؛ Mehdi Islahi1؛ masiholah Mohammadi3 | ||
1Department of Physical Geography, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran. | ||
2Department of Physical Geography, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran. | ||
3Department of Physical Geography, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran. | ||
چکیده [English] | ||
Extreme weather events are one of the most important challenges for agricultural producers, and these events are currently increasing. Projection the effects of extreme events on garden crops is one of the most important discussions in food security and agricultural economics. The purpose of this research is to investigate the consequences of climate change on the trend of extreme events and its effect on the phenology of almond trees in East Azerbaijan province. In order to investigate and project Precipitation and minimum and maximum temperature and determine the climate change extreme index that had the greatest impact on almond tree phenology from the Cimate Model Intercomparion Project – Phase 6 (CMIP 6) in the upcoming period (2021 to 2100) was used in Tabriz, Ahar, Jolfa, Maragheh and Midane stations. The results of the investigation of temperature and precipitation indicators for the future periods indicated that the average annual temperature will increase from 0.9 to 4.5 degrees Celsius until the year 2100 and the Precipitation output until the year 2100 indicates that the Precipitation in SSP5-8.5 scenario will decrease and in two scenarios SSP1-2.6 and SSP2-4.5 will increase a bit. These results showed that the length of the almond tree growth season increased from 176 days in the base observed period to 156 days in the SSP1-2.6 scenario, 150 days in the SSP2-4.5 scenario, and 146 days in the SSP5-8.5 scenario. | ||
کلیدواژهها [English] | ||
General Circulation model, Process, almond phenology, CMIP6, SSP scenarios | ||
مراجع | ||
Ansari, S., Dehban, H., Zareian, M., & Farokhnia, A. (2022). Investigation of temperature and precipitation changes in the Iran's basins in the next 20 years based on the output of CMIP6 model. Iranian Water Researches Journal, 16(1), 11-24. (In Persian). Biabani Samani, M. (2017). Investigating flower bud phenology and determining cold and heat requirements in 5 commercial almond cultivars. Master's thesis, supervisor Dr. Abdurrahman Mohammadkhani, Shahrekord University. (In Persian). Chaichi, S. (1368). Varieties of late flower almonds, technical publication of the Agricultural Research, Education and Promotion Organization. (In Persian). chamanehfar, S., Mousavi Baygi, M., babaeian, I., & Modaresi, F. (2022). Future projection for extreme indices of precipitation and temperature over the period 2026-2100 based on the output of CMIP6 models (Case study: Mashhad). Iranian Journal of Irrigation & Drainage, 16(5), 963-976. (In Persian). Dejampour, J. (2013). Evaluation of Early Spring Frost Damage in Different Types of Almond and Apricot Caltivars. Journal Of Horticultural Science, 27(3), 301-309. (In Persian). Erfanian, M., Ansari, H., Alizadeh, A., Banayan Aval, M. (2018). Impact of Extreme climatic events on Production risk of Winter wheat in Climate Change Condition (Case study: Khorasan Razavi Province). Journal of Natural Environmental Hazards, 7(17), 175-194. (In Persian). Esmaeili, R., Gandomkar, A., Ghayoor, H. A. (2009). Zoning of climate changes rate base on agriculture approach in future climatic period (case study Khorasan Razavi province). Geography and Environmental Planning Journal. 22 (41), 35 – 52. (In Persian). Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development (Online). 9 (LLNL-JRNL-736881). Fang, G H., Yang, J., Chen, Y. N., Zammit, C .(2015). Comparing bias correction methods indownscaling meteorological variables for a hydrologic impact study in an arid area in China. Hydrology and Earth System Sciences. 19, 2547–2559. farajnia, A., & Moravej, K. (2020). Agro climatic Zoning of Saffron Culture in East Azarbayjan Province. Journal of Saffron Research, 7(2), 251-267. (In Persian). Gidden, M., Riahi, K., Smith, S., Fujimori, S., Luderer, G., Kriegler, E., & Calvin, K. (2019). Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geoscientific Model Development Discussions, 12 (4), 1443-1475. Hatfield, J.L., and Prueger, J.H. (2015. Temperature extremes: Effect on plant growth and development. Weather Clim. Extr. 10, 4-10. heidari S, Goodarzi M, Shamsipoor A A, Bazgir S, Abdolahi Kakrudi A. (2018). Evaluating Statistical Methods for Detecting Trend of Precipitation (Case Study: Kermanshah Province). Iranian Journal of Watershed Management Science and Engineering, 12 (42) :81-90. (In Persian). IPCC. (1995). ClimateChange1994, In: Houghten JT., Meira Filno L G., Bruce J.P., Lee H., Callender, B.T., Haites E.F., Harris. Jahangir, M. H., & Mohammadi, A. (2018). Climatic zoning of East Azerbaijan by LARS-WG down scaling model for 2011-2065. Geography (Regional Planning), 8(30), 119-130. Javadi, Z., Fallah-Ghalhari, G., & Entezari, A. (2014). The role of climatic parameters on yield of almond Case Study: Sabzevar. Journal of Climate Research, 17(17), 125-141. (In Persian). Jin Z., Zhuang Q., Wang J., Archontoulis S.V., Zobel Z., and Kotamarthi V.R. (2017). The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO2. Global Change Biology. 23(7): 2687-2704. Knoben, W. J., J. E. Freer and R. A. Woods. (2019). Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores. Hydrology and Earth System Sciences. 23(10), 4323-4331. kouzegaran, S., Mousavi Baighi, M., Khashai Seyuki, A., Babaiyan, I. (2018). Modeling of the Saffron Yield Based on Meteorological Extreme Events (Case study: Birjand). Journal of Saffron Research, 5(2), 217-229. (In Persian). López-Díaz, F., Conde, C., and Sánchez, O. (2013). Analysis of indices of extreme temperature events at Apizaco, Tlaxcala, Mexico: 1952-2003. Atmósfera, 26 (3): 349-358. Majumder, M. (2015). Impact of urbanization on water shortage in face of climatic aberrations. Springer. Mehran, A., AghaKouchak, A., & Phillips, T. J. (2014). Evaluation of CMIP5 continental precipitation simulations relative to satellite‐based gauge‐adjusted observations. Journal of Geophysical Research: Atmospheres, 119 (4), 1695-1707. Patil, S. D. and M. Stieglitz. (2015). Comparing spatial and temporal transferability of hydrological modelparameters. Journal of Hydrology 525, 409-417. Powell, J.P., and Reinhard, S. (2016). Measuring the effects of extreme weather events on yields. Weather Clim. Extr. 12, 69-79. Semenov, M. A. (2008). Simulation of extreme weather events by a stochastic weather generator. Climate Research 35(3), 203-212. Stone, P., and Nicolas, M. (1994). Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Func. Plant Biol. 21, 887–900. Stouffer R. J. Eyring V. Meehl G. A. Bony S. Senior C. Stevens B. and Taylor K. E. 2017. CMIP5 scientific gaps and recommendations for CMIP6. Bulletin of the American Meteorological Society. 98(1): 95-105. Zarrin, A., dadashi-rodbari, A., & Salehabadi, N. (2021). Projected temperature anomalies and trends in different climate zones in Iran based on CMIP6. Iranian Journal of Geophysics, 15(1), 35-54. (In Persian). Zheng, B., Chenu, K., Fernanda Dreccer, M., and Chapman, S.C. (2012). Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties? Glob. Chang. Biol. 18, 2899–2914. | ||
آمار تعداد مشاهده مقاله: 156 تعداد دریافت فایل اصل مقاله: 77 |