
تعداد نشریات | 162 |
تعداد شمارهها | 6,692 |
تعداد مقالات | 72,232 |
تعداد مشاهده مقاله | 129,198,412 |
تعداد دریافت فایل اصل مقاله | 102,028,371 |
بررسی تغییرات مورفو-فیزیولوژیک و فیتوشیمیایی مریمگلی (Salvia officinalis L.) در واکنش به دمای بالای محیط | ||
به زراعی کشاورزی | ||
مقاله 6، دوره 27، شماره 1، اسفند 1403، صفحه 91-107 اصل مقاله (626.15 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jci.2024.364042.2840 | ||
نویسندگان | ||
حمید محمدی* 1؛ رعنا علی پور فخری1؛ مهدی جودی2؛ محمد اسماعیل پور3 | ||
1گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شهید مدنی آذربایجان، تبریز، ایران | ||
2گروه علو م گیاهی و گیاهان داروئی، دانشکده کشاورزی مشکین شهر، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
3گروه مهندسی تولید و ژنتیگ گیاهی، دانشکده کشاورزی، دانشگاه جهرم، جهرم، ایران | ||
چکیده | ||
هدف: بهمنظور بررسی واکنش مریمگلی به تأخیر در تاریخ کشت، پژوهش حاضر بهصورت طرح بلوکهای کامل تصادفی با سه تکرار در مزرعه تحقیقاتی دانشکده کشاورزی مشکینشهر در سال 1399 اجرا گردید. روش پژوهش: تیمار موردبررسی شامل تاریخ کاشت در دو سطح تاریخ کاشت، کشت به موقع (شاهد) و تیمار کاشت تأخیری بود که بهترتیب در 15 اردیبهشتماه و 25 خردادماه اجرا شدند. یافتهها: نتایج نشان داد که دمای بالای ناشی از کشت تأخیری، موجب افزایش معنیدار میزان فنل کل، فلاونوئید کل، آنتوسیانینها، عملکرد اسانس، خاصیت آنتیاکسیدانی بهترتیب به میزان 25، 44، 85، 80 و 39 درصد و در عینحال، کاهش ارتفاع بوته، عرض برگ و وزن تر و خشک اندام هوایی بهترتیب به میزان هشت، 13، 41 و 34 درصد نسبت به شاهد گردید. همبستگی منفی و معنیداری نیز بین وزن تر یا خشک بوته با درصد اسانس و سایر ترکیبات فیتوشیمیایی اندازهگیری شده وجود داشت. همچنین در شرایط کشت تأخیری، میزان برخی از اجزای اسانس شامل α-توجون، β-توجون، β-پینن، بورنئول و وریدیفلورل در مقایسه با تاریخ کاشت رایج بهترتیب به میزان 23، 15، 28، 37 و 46 درصد افزایش یافت. نتیجهگیری: افزایش متابولیتهای ثانویه در کشت تأخیری نشاندهنده این است که احتمالاً مریمگلی در مواجهه با دمای بالای محیط از راهبرد تخصیص بیشتر کربن تثبیتشده فتوسنتزی به تولید و بیوسنتز متابولیتهای ثانویه استفاده کرده تا بهواسطه کاهش تولید و یا افزایش پاکسازی رادیکالهای آزاد اکسیژن، میزان تحمل به شرایط نامساعد گرمایی را بهبود دهد. | ||
کلیدواژهها | ||
خاصیت آنتی اکسیدانی؛ زیست توده؛ عملکرد اسانس؛ فنولها؛ متابولیتهای ثانویه | ||
عنوان مقاله [English] | ||
Investigation of Morpho-physiological and Phytochemical Changes in Sage (Salvia officinalis L.) in Response to High Environmental Temperature | ||
نویسندگان [English] | ||
hamid Mohammadi1؛ Rana Alipour Fakhry1؛ Mehdi Joudi2؛ Mohammad Esmailpour3 | ||
1Department of Agronomy and Plant Breeding, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran. | ||
2Department of Plant Science and Medicinal Herbs, Meshgin Shahr Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran | ||
3Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Jahrom University, Jahrom, Iran. | ||
چکیده [English] | ||
Objective: In order to investigate the response of sage to delayed planting, the present study was performed as a randomized complete block design with three replications in the Meshkin Shahr Faculty of Agriculture research farm in 2020. Methods: The treatments were two planting dates including conventional planting date (as control) and delayed planting which were cultivated on May 5th and June 15th, respectively. Results: The results showed that delayed planting-mediated high temperature significantly increased total phenol, total flavonoids, anthocyanin, essential oil yield, and antioxidant properties by 25, 44, 85, 80, and 39 percent, respectively and decreased plant height, leaf width, and shoot fresh and dry weight by 8, 13, 41 and 34 percent, respectively compared to control. There were also negative and significant correlations between plant fresh or dry weight and essential oil percentage as well as the other measured phytochemical constituents. In addition, some essential oil constituents including α-Thujone, β-Thujone, β-Pinene, Borneol, and Viridiflorol were increased by 23, 15, 28, 37, and 46, respectively under heat stress compared to the control. Conclusion: In general, an increase in secondary metabolite in delayed planting treatment indicates that sage plants probably employed the strategy of allocating more photosynthetically fixed carbon to the biosynthesis of secondary metabolites to improve plant tolerance to high-temperature conditions via a decrease in reactive oxygen species production and/or increase in the scavenging potential of those radicles. | ||
کلیدواژهها [English] | ||
Antioxidant properties, Biomass, Essential oil yield, Phenols, Secondary metabolites | ||
مراجع | ||
مظفریان، ولیالله (1394). شناخت گیاهان دارویی و معطر ایران. چاپ چهارم. تهران: انتشارات فرهنگ معاصر.
Adib, S. S., Dehaghi, M. A., Rezazadeh, A., & Naji, A. (2020). Evaluation of sulfur and foliar application of Zn and Fe on yield and biochemical factors of cumin (Cuminum cyminum L.) under irrigation regimes. Journal of HerbMed Pharmacology, 9(2), 161-170. Alhaithloul, H. A., Soliman, M. H., Ameta, K. L., El-Esawi, M. A., & Elkelish, A. (2019). Changes in ecophysiology, osmolytes, and secondary metabolites of the medicinal plants of Mentha piperita and Catharanthus roseus subjected to drought and heat stress. Biomolecules, 10(1), 43. Askary, M., Behdani, M. A., Parsa, S., Mahmoodi, S., & Jamialahmadi, M. (2018). Water stress and manure application affect the quantity and quality of essential oil of Thymus daenensis and Thymus vulgaris. Industrial Crops and Products, 111, 336-344. Assaggaf, H. M., Naceiri Mrabti, H., Rajab, B. S., Attar, A. A., Alyamani, R. A., Hamed, M., ... & Bouyahya, A. (2022). Chemical analysis and investigation of biological effects of Salvia officinalis essential oils at three phenological stages. Molecules, 27(16), 1-16. Baghbani-Arani, A., Modarres-Sanavy, S. A. M., Mashhadi-Akbar-Boojar, M., & Mokhtassi-Bidgoli, A. (2017). Towards improving the agronomic performance, chlorophyll fluorescence parameters and pigments in fenugreek using zeolite and vermicompost under deficit water stress. Industrial Crops and Products, 109, 346-357. Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, 99(1), 191-203. Ben Mariem, S., Soba, D., Zhou, B., Loladze, I., Morales, F., & Aranjuelo, I. (2021). Climate change, crop yields, and grain quality of C3 cereals: A meta-analysis of (CO2), temperature, and drought effects. Plants, 10(6), 1052. Bettaieb, I., Zakhama, N., Wannes, W. A., Kchouk, M. E., & Marzouk, B. (2009). Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Scientia Horticulturae, 120(2), 271-275. Bistgani, Z. E., Siadat, S. A., Bakhshandeh, A., Pirbalouti, A. G., & Hashemi, M. (2017). Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of Thymus daenensis Celak. The Crop Journal, 5(5), 407-415. Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199-1200. Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), 25-30. Caser, M., Chitarra, W., D'Angiolillo, F., Perrone, I., Demasi, S., Lovisolo, C., & Scariot, V. (2019). Drought stress adaptation modulates plant secondary metabolite production in Salvia dolomitica Codd. Industrial Crops and Products, 129, 85-96. Ghasemi Pirbalouti, A., Rahmani Samani, M., Hashemi, M., & Zeinali, H. (2014). Salicylic acid affects growth, essential oil and chemical compositions of thyme (Thymus daenensis Celak.) under reduced irrigation. Plant Growth Regulation, 72(3), 289-301. Hamidpour, M., Hamidpour, R., Hamidpour, S., & Shahlari, M. (2014). Chemistry, pharmacology, and medicinal property of sage (Salvia) to prevent and cure illnesses such as obesity, diabetes, depression, dementia, lupus, autism, heart disease, and cancer. Journal of Traditional and Complementary Medicine, 4(2), 82-88. Harish, B. S., Dandin, S. B., Umesha, K., & Sasanur, A. (2012). Impact of climate change on Medicinal Plants–A review. Ancient Science of Life, 32(Suppl 1), S23. Hassan, M. U., Chattha, M. U., Khan, I., Chattha, M. B., Barbanti, L., Aamer, M., & Aslam, M. T. (2021). Heat stress in cultivated plants: Nature, impact, mechanisms, and mitigation strategies-A review. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 155(2), 211-234. Hazrati, S., Beidaghi, P., Beyraghdar Kashkooli, A., Hosseini, S. J., & Nicola, S. (2022). Effect of harvesting time variations on essential oil yield and composition of Sage (Salvia officinalis). Horticulturae, 8(2), 149. Heydari, M., Zanfardino, A., Taleei, A., Shahnejat Bushehri, A. A., Hadian, J., Maresca, V., & Rigano, D. (2018). Effect of heat stress on yield, monoterpene content and antibacterial activity of essential oils of Mentha x piperita var. Mitcham and Mentha arvensis var. piperascens. Molecules, 23(8), 1903. Isah, T. (2019). Stress and defense responses in plant secondary metabolites production. Biological Research, 52. Ivanitskikh, A. S., & Tarakanov, I. G. (2014). Effect of light spectral quality on essential oil components in Ocimum basilicum and Salvia officinalis plants. International Journal of Secondary Metabolite, 1(1), 19. Jaafar, H. Z., Ibrahim, M. H., & Fakri, N. F. M. (2012). Impact of soil field water capacity on secondary metabolites, phenylalanine ammonia-lyase (PAL), maliondialdehyde (MDA) and photosynthetic responses of Malaysian Kacip Fatimah (Labisia pumila Benth). Molecules, 17(6), 7305-7322. Jakovljević, M., Jokić, S., Molnar, M., Jašić, M., Babić, J., Jukić, H., & Banjari, I. (2019). Bioactive profile of various Salvia officinalis L. preparations. Plants, 8(3), 55. Khalid, M., Bilal, M., & Huang, D. F. (2019). Role of flavonoids in plant interactions with the environment and against human pathogens-A review. Journal of Integrative Agriculture, 18(1), 211-230. Khiya, Z., Oualcadi, Y., Gamar, A., Berrekhis, F., Zair, T., & Hilali, F. E. (2021). Correlation of total polyphenolic content with antioxidant activity of hydromethanolic extract and their fractions of the Salvia officinalis leaves from different regions of Morocco. Journal of Chemistry, 2021, 1-11. Kulak, M., Gul, F., & Sekeroglu, N. (2020). Changes in growth parameter and essential oil composition of sage (Salvia officinalis L.) leaves in response to various salt stresses. Industrial Crops and products, 145, 112078. Lin, K. H., Lin, T. Y., Wu, C. W., & Chang, Y. S. (2021). Protective effects of salicylic acid and calcium chloride on sage plants (Salvia officinalis L. and Salvia elegans Vahl) under high-temperature stress. Plants, 10(10), 2110. Lopresti, A. L. (2017). Salvia (Sage): A review of its potential cognitive-enhancing and protective effects. Drugs in R&D, 17(1), 53-64. McDonald, S., Prenzler, P. D., Antolovich, M., & Robards, K. (2001). Phenolic content and antioxidant activity of olive extracts. Food Chemistry, 73(1), 73-84. Minaei, A., Hassani, A., Nazemiyeh, H., & Besharat, S. (2019). Effect of drought stress on some morphophysiological and phytochemical characteristics of oregano (Origanum vulgare L. ssp. gracile). Iranian Journal of Medicinal and Aromatic Plants, 35(2), 252-265. Mot, M. D., Gavrilaș, S., Lupitu, A. I., Moisa, C., Chambre, D., Tit, D. M., & Bungau, S. G. (2022). Salvia officinalis L. essential oil: Characterization, antioxidant properties, and the effects of aromatherapy in adult patients. Antioxidants, 11(5), 808. Moure, A., Cruz, J. M., Franco, D., Domı́nguez, J. M., Sineiro, J., Domı́nguez, H., Nunez, M. J., & Parajó, J. C. (2001). Natural antioxidants from residual sources. Food Chemistry, 72(2), 145-171. Mozaffarian, V. (2015). Identification of Medicinal and Aromatic Plants of Iran. Tehran: Farhang Moaser Press. (In Persian). Ozkan, G., Sagdic, O., Ekici, L., Ozturk, I., & Ozcan, M. M. (2007). Phenolic compounds of Origanum sipyleum L. extract, and its antioxidant and antibacterial activities. Journal of Food Lipids, 14(2), 157-169. Selmar, D., Kleinwächter, M., Abouzeid, S., Yahyazadeh, M., & Nowak, M. (2017). The impact of drought stress on the quality of spice and medicinal plants. Medicinal Plants and Environmental Challenges, 159-175. Sharifi-Rad, M., Ozcelik, B., Altın, G., Daşkaya-Dikmen, C., Martorell, M., Ramírez-Alarcón, K., & Sharifi-Rad, J. (2018). Salvia spp. plants-from farm to food applications and phytopharmacotherapy. Trends in Food Science & Technology, 80, 242-263. Siddiqui, M. H., Al-Khaishany, M. Y., Al-Qutami, M. A., Al-Whaibi, M. H., Grover, A., Ali, H. M., & Al-Wahibi, M. S. (2015). Morphological and physiological characterization of different genotypes of faba bean under heat stress. Saudi Journal of Biological Sciences, 22(5), 656-663. Sutharut, J., & Sudarat, J. (2012). Total anthocyanin content and antioxidant activity of germinated colored rice. International Food Research Journal, 19(1), 215-221. Taarit, M. B., Msaada, K., Hosni, K., Hammami, M., Kchouk, M. E., & Marzouk, B. (2009). Plant growth, essential oil yield and composition of sage (Salvia officinalis L.) fruits cultivated under salt stress conditions. Industrial Crops and Products, 30(3), 333-337. Tohidi, B., Rahimmalek, M., & Trindade, H. (2019). Review on essential oil, extracts composition, molecular and phytochemical properties of Thymus species in Iran. Industrial Crops and Products, 134, 89-99. | ||
آمار تعداد مشاهده مقاله: 91 تعداد دریافت فایل اصل مقاله: 68 |