
تعداد نشریات | 162 |
تعداد شمارهها | 6,693 |
تعداد مقالات | 72,239 |
تعداد مشاهده مقاله | 129,221,909 |
تعداد دریافت فایل اصل مقاله | 102,051,275 |
پیشبینی پارامترهای محیطی گلخانه با استفاده از الگوریتم یادگیری عمیق | ||
مهندسی بیوسیستم ایران | ||
دوره 55، شماره 4، بهمن 1403، صفحه 63-79 اصل مقاله (1.83 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijbse.2025.388236.665578 | ||
نویسندگان | ||
هژیر ع قادری؛ رضا علیمردانی* ؛ سید سعید محتسبی؛ محمد حسین پور زرنق | ||
گروه مهندسی ماشینهای کشاورزی، دانشکدگان کشاورزی و منابع طبیعی دانشگاه تهران، دانشگاه تهران، کرج، ایران. | ||
چکیده | ||
ایجاد شرایط مناسب به جهت رشد گیاه در گلخانه نیازمند صرف کردن منابع و هزینههای عملیاتی است. بهمنظور مدیریت صحیح و صرفهجویی در مصرف منابع و هزینهها در گلخانه، کنترل شرایط محیطی بایستی به شکل کارآمد و اثربخشی صورت بپذیرد. روش مبتنی بر مدل دینامیکی با توجه به قدمت و برخورداری از ماهیت ریاضی پیوسته مورد توجه محققان در حوزه کنترل شرایط محیطی گلخانه بوده است. در این تحقیق، یک سامانه پیشبینی شرایط محیطی برای گلخانه شیشهای با استفاده از یادگیری عمیق طراحی شد. روش توسعه داده شده در مهیا کردن شرایط دقیق در تولید محصول گوجهفرنگی در گلخانه شیشهای انجام شد. مدل توسعه داده شده مبتنی بر یادگیری عمیق پیشبینی دما، رطوبت نسبی و غلظت دیاکسید کربن داخل گلخانه را بر اساس ورودیهای سرعت باد، دمای مجازی آسمان، میزان تابش فعال فتوسنتزی، تابش تجمعی، دما، رطوبت نسبی و غلظت دیاکسید کربن بیرون با ضریب تبیین ۸1/۰، ۶۱/۰ و ۸5/۰ انجام داد. شبکه عصبی عمیق به دلیل استفاده از دادههای عملیاتی گلخانه تحت کنترل کارشناسان خبره دارای عملکرد مناسب بود و نسبت به مدلهای دینامیکی مزایای امکان بهکارگیری بدون نیاز به مدل قبلی، تصمیمگیری پیوسته و بلندمدت برای شرایط محیطی بر اساس نیازهای گیاه، پایداری ذاتی بالا، سازگاری بالا و پیچیدگی کم در آموزش بلادرنگ را مهیا میکند. بر این اساس روشهای دقیق مبتنی بر هوش مصنوعی میتوانند به انتخاب بهترین راهکار در راستای حل مسئله کنترل بهینه گلخانه برای افزایش عملکرد و کاهش هزینه بیانجامد. | ||
کلیدواژهها | ||
گلخانه هوشمند؛ هوش مصنوعی؛ مدل های شبیه سازی | ||
عنوان مقاله [English] | ||
Predicting Greenhouse Microclimatic Parameters Using a Deep Learning Algorithm | ||
نویسندگان [English] | ||
Hajir Ein Ghaderi؛ Reza Alimardani؛ Seyed Saeid Mohtasebi؛ Mohammad Hosseinpour-Zarnaq | ||
Department of Agricultural Machinery Engineering, Faculty of Agriculture, University of Tehran, Karaj, Iran. | ||
چکیده [English] | ||
Providing proper conditions for plant growth in the greenhouse requires precise management of resources concerning operating costs. Consequently, an automatic and efficient greenhouse weather control system is needed for accurate management and cost reduction. Traditionally, dynamic models have been valuable tools for controlling the greenhouse climate. In this research, the design of a system for predicting the environmental conditions of the greenhouse was studied using deep learning. The developed method was implemented to ensure precise conditions for the production of tomato crops in a glass greenhouse. The deep learning-based model successfully predicted the greenhouse temperature, relative humidity, and carbon dioxide concentration using inputs such as wind speed, the virtual sky temperature, cumulative outside global radiation, outside photosynthetically active radiation, outside temperature, outside relative humidity, and outside carbon dioxide concentration, with coefficients of determination of 0.81, 0.61, and 0.85, respectively. The performance of the deep neural network was significant due to the utilization of precise data controlled by expert operators. Compared to dynamic modelling, the advantages of the suggested framework include high stability, adaptability for use without the need for a previous model, the ability to make unlimited decisions, and low complexity in real-time training. Therefore, smart artificial intelligence methods can lead to finding the best solution for optimal greenhouse control, enhancing performance, and reducing costs while addressing other limitations. | ||
کلیدواژهها [English] | ||
Smart greenhouses, artificial intelligence, simulation model | ||
مراجع | ||
Ajagekar, A., & You, F. (2022). Deep reinforcement learning based automatic control in semi-closed greenhouse systems. IFAC-PapersOnLine, 55(7), 406–411. https://doi.org/10.1016/j.ifacol.2022.07.477 Bolandnazar, E., sadrnia, hassan, Rohani, A., & Taki, M. (2020). Prediction of Temperature in a Greenhouse Covered with Polyethylene Plastic Using Artificial Neural Networks, Case Study: Jiroft Region. Iranian Journal of Biosystems Engineering, 51(1), 125–137. (In Persian). https://doi.org/10.22059/ijbse.2019.291077.665235 Bot, G. P. A. (1991). Physical modeling of greenhouse climate. IFAC Proceedings Volumes, 24(11), 7–12. https://doi.org/10.1016/B978-0-08-041273-3.50006-9 Chalabi, Z. S., & Bailey, B. J. (1991). Sensitivity analysis of a non-steady state model of the greenhouse microclimate. Agricultural and Forest Meteorology, 56(1–2), 111–127. https://doi.org/10.1016/0168-1923(91)90107-2 Chen, T.-H., Lee, M.-H., Hsia, I.-W., Hsu, C.-H., Yao, M.-H., & Chang, F.-J. (2022). Develop a smart microclimate control system for greenhouses through system dynamics and machine learning techniques. Water, 14(23), 3941. De Zwart, H. F. (1996). Analyzing energy-saving options in greenhouse cultivation using a simulation model. Wageningen University and Research. Falamarzi, Y., Palizdan, N., Huang, Y. F., & Lee, T. S. (2014). Estimating evapotranspiration from temperature and wind speed data using artificial and wavelet neural networks (WNNs). Agricultural Water Management, 140, 26–36. https://doi.org/10.1016/j.agwat.2014.03.014 Ferreira, P. M., Faria, E. A., & Ruano, A. E. (2002). Neural network models in greenhouse air temperature prediction. Neurocomputing, 43(1–4), 51–75. https://doi.org/10.1016/S0925-2312(01)00620-8 Gong, L., Yu, M., Jiang, S., Cutsuridis, V., & Pearson, S. (2021). Deep learning based prediction on greenhouse crop yield combined TCN and RNN. Sensors, 21(13), 4537. https://doi.org/10.3390/s21134537 He, G., Geng, C., Zhai, J., Zhao, Y., Wang, Q., Jiang, S., Zhu, Y., & Wang, L. (2021). Impact of food consumption patterns change on agricultural water requirements: An urban-rural comparison in China. Agricultural Water Management, 243, 106504. https://doi.org/10.1016/j.agwat.2020.106504 He, L., Du, Y., Wu, S., & Zhang, Z. (2021). Evaluation of the agricultural water resource carrying capacity and optimization of a planting-raising structure. Agricultural Water Management, 243, 106456. https://doi.org/10.1016/j.agwat.2020.106456 Hemming, S., de Zwart, F., Elings, A., Righini, I., & Petropoulou, A. (2019). Remote control of greenhouse vegetable production with artificial intelligence—greenhouse climate, irrigation, and crop production. Sensors, 19(8), 1807. https://doi.org/10.3390/s19081807 Hemming, S., Zwart, F. de, Elings, A., Petropoulou, A., & Righini, I. (2020). Cherry tomato production in intelligent greenhouses—Sensors and AI for control of climate, irrigation, crop yield, and quality. Sensors, 20(22), 6430. https://doi.org/10.3390/s20226430 Heuvelink, E. (1996). Tomato growth and yield: quantitative analysis and synthesis. Wageningen University and Research. Hu, H.-G., Xu, L.-H., Wei, R.-H., & Zhu, B.-K. (2011). RBF network based nonlinear model reference adaptive PD controller design for greenhouse climate. Int. J. Adv. Comput. Technol, 3, 357–366. Jia, W., & Wei, Z. (2022). Short term prediction model of environmental parameters in typical solar greenhouse based on deep learning neural network. Applied Sciences, 12(24), 12529. Jung, D.-H., Kim, H. S., Jhin, C., Kim, H.-J., & Park, S. H. (2020). Time-serial analysis of deep neural network models for prediction of climatic conditions inside a greenhouse. Computers and Electronics in Agriculture, 173, 105402. Klarin, B., Garafulić, E., Vučetić, N., & Jakšić, T. (2019). New and smart approach to aeroponic and seafood production. Journal of Cleaner Production, 239, 117665. https://doi.org/10.1016/j.jclepro.2019.117665 Konig, B., Kuntosch, A., Bokelmann, W., Doernberg, A., Schwerdtner, W., Busse, M., Siebert, R., Koschatzky, K., & Stahlecker, T. (2012). Analysing agricultural innovation systems: a multilevel mixed methods approach. https://doi.org/10.22004/ag.econ.135792 Lin, D., Zhang, L., & Xia, X. (2021). Model predictive control of a Venlo-type greenhouse system considering electrical energy, water and carbon dioxide consumption. Applied Energy, 298(October 2020), 117163. https://doi.org/10.1016/j.apenergy.2021.117163 McNutty, J. (2017). Solar greenhouses generate electricity and grow crops at the same time, UC Santa Cruz study reveals. In USC Newscenter. University of California. Morales-García, J., Terroso-Sáenz, F., & Cecilia, J. M. (2024). A multi-model deep learning approach to address prediction imbalances in smart greenhouses. Computers and Electronics in Agriculture, 216, 108537. Seginer, I. (1997). Some artificial neural network applications to greenhouse environmental control. Computers and Electronics in Agriculture, 18(2–3), 167–186. https://doi.org/10.1016/S0168-1699(97)00028-8 Seginer, I., Boulard, T. H., & Bailey, B. J. (1994). Neural network models of the greenhouse climate. Journal of Agricultural Engineering Research, 59(3), 203–216. https://doi.org/10.1006/jaer.1994.1078 Shi, D., Yuan, P., Liang, L., Gao, L., Li, M., & Diao, M. (2024). Integration of deep learning and sparrow search algorithms to optimize greenhouse microclimate prediction for seedling environment suitability. Agronomy, 14(2), 254. Shin, S. H., Deb, N. C., Arulmozhi, E., Tamrakar, N., Ogundele, O. M., Kook, J., Kim, D. H., & Kim, H. T. (2024). Prediction of Carbon Dioxide Concentrations in Strawberry Greenhouse by Using Time Series Models. Agriculture, 14(11), 1895. https://doi.org/10.3390/agriculture14111895 Singh, R. D., & Tiwari, G. N. (2010). Energy conservation in the greenhouse system: A steady state analysis. Energy, 35(6), 2367–2373. https://doi.org/10.1016/j.energy.2010.02.003 Statistical Center of Iran, (2019). National Statistical Yearbook. Agriculture, Forestry and Fisheries. (In Persian). Van Henten, E. J. (2003). Sensitivity Analysis of an Optimal Control Problem in Greenhouse Climate Management. Biosystems Engineering, 85(3), 355–364. https://doi.org/https://doi.org/10.1016/S1537-5110(03)00068-0 Vanthoor, B. H. E. (2011). A model-based greenhouse design method. Wageningen University and Research. Vanthoor, B. H. E., De Visser, P. H. B., Stanghellini, C., & Van Henten, E. J. (2011). A methodology for model-based greenhouse design: Part 2, description and validation of a tomato yield model. Biosystems Engineering, 110(4), 378–395. https://doi.org/10.1016/j.biosystemseng.2011.08.005 Vanthoor, B. H. E., Stanghellini, C., Van Henten, E. J., & De Visser, P. H. B. (2011). A methodology for model-based greenhouse design: Part 1, a greenhouse climate model for a broad range of designs and climates. Biosystems Engineering, 110(4), 363–377. https://doi.org/10.1016/j.biosystemseng.2011.06.001 Wang, D., Wang, M., & Qiao, X. (2009). Support vector machines regression and modeling of greenhouse environment. Computers and Electronics in Agriculture, 66(1), 46–52. https://doi.org/10.1016/j.compag.2008.12.004 Zeng, S., Hu, H., Xu, L., & Li, G. (2012). Nonlinear adaptive PID control for greenhouse environment based on RBF network. Sensors, 12(5), 5328–5348. https://doi.org/10.3390/s120505328 | ||
آمار تعداد مشاهده مقاله: 57 تعداد دریافت فایل اصل مقاله: 44 |