
تعداد نشریات | 162 |
تعداد شمارهها | 6,693 |
تعداد مقالات | 72,243 |
تعداد مشاهده مقاله | 129,246,700 |
تعداد دریافت فایل اصل مقاله | 102,084,741 |
ارزیابی فنی- اقتصادی و محیطزیستی عملکرد سیستم هیبریدی بهمنظور جبران خاموشیهای شبکه برق در مناطق مسکونی | ||
مهندسی بیوسیستم ایران | ||
دوره 55، شماره 4، بهمن 1403، صفحه 81-102 اصل مقاله (2.39 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijbse.2025.385950.665575 | ||
نویسندگان | ||
مرضیه صالحی1؛ مجید خانعلی* 2؛ حسن قاسمی مبتکر3؛ محمدامین وزیری راد4 | ||
1گروه مهندسی ماشینهای کشاورزی، دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران. | ||
2گروه مهندسی ماشین های کشاورزی، دانشکدۀ مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
3گروه مهندسی ماشینهای کشاورزی، دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
4دانشکده مهندسی انرژی و منابع پایدار ،دانشکدگان علوم و فناوری های میان رشته ای ، دانشگاه تهران | ||
چکیده | ||
در این پژوهش امکان استفاده از سیستم هیبریدی متشکل از شبکه/ توربین بادی/ پنل خورشیدی/ الکترولایزر/ مبدل / باتری از لحاظ فنی- اقتصادی و محیطزیستی جهت جبران خاموشیهای برق مصرفی واحدهای مسکونی در منطقه نجف آباد اصفهان مورد ارزیابی قرار گرفت. این ارزیابی توسط نرمافزارهای تحلیل انرژی هومر و سیماپرو صورت گرفت. در این پژوهش 5 سناریو جهت اعمال قطعی برق در نظر گرفته شد. در سناریو اول که بهعنوان سناریو پایه شناخته شد، خاموشیها بدون برنامه زمانی مشخص و تحتتأثیر تصمیمات دولتی و الزامات فوری رخ میدهند که بیانگر وضعیت واقعی خاموشی در شهر نجفآباد است. هزینه انرژی برای سناریوهای 1، 2، 3، 4 و 5 به ترتیب 0712/0، 0839/0، 0759/0، 0966/0 و 0777/0 دلار بر کیلوواتساعت محاسبه گردید. نتایج نشان داد که اگر دولت برای جبران کمبود ظرفیت در شبکه برق سراسری، قطع برق را در ساعات آفتابی برنامهریزی کند، استفاده از انرژیهای تجدیدپذیر در مقیاس بزرگ مقرونبهصرفه خواهد بود؛ بنابراین سناریو سوم با بهرهگیری از 34 عدد توربین بادی، 49844 کیلووات پنل خورشیدی، 5000 کیلووات الکترولایزر، 29268 کیلووات مبدل، 34500 کیلوواتساعت باتری و 5/116541 مگاواتساعت بر سال شبکه سراسری کمترین میزان هزینه انرژی را به خود اختصاص داده است و بهعنوان پایدارترین سناریو برای تولید توان در نظر گرفته شد. بر اساس نتایج، مقادیر کل آلایندههای محیطزیستی در پنج سناریو به ترتیب 36/38، 20،16/17، 29/14 و 38/23 (1- mPt kWh) گزارش گردید و سناریوی چهارم با کاهش 62 درصدی آلایندهها نسبت به سناریو پایه به لحاظ محیطزیستی، پایدارترین سناریو شناخته شد. | ||
کلیدواژهها | ||
ارزیابی چرخه زندگی؛ سیستم هیبریدی؛ خاموشی شبکه؛ هزینه انرژی؛ هومر | ||
عنوان مقاله [English] | ||
Techno-economic optimization and environmental Life Cycle Assessment (LCA) of Hybrid System Microgrids for Minimizing Grid Power Outages in Residential Areas | ||
نویسندگان [English] | ||
Marzie Salehi1؛ Majid Khanali2؛ Hassan Ghasemi-Mobtaker3؛ Mohammad Amin Vaziri Rad4 | ||
1Department of Agricultural Machinery Engineering, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran | ||
2Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran | ||
3Department of Agricultural Machinery Engineering, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran | ||
4School of Energy Engineering and Sustainable Resources College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran | ||
چکیده [English] | ||
This study investigates the techno-economic and environmental performance of a hybrid renewable microgrid consisting of grid/ wind turbine / solar panels /electrolyzer/inverter/battery for mitigating power outages in Najafabad Isfahan. In this paper the environmental assessment utilizes a life cycle assessment (LCA) approach with ReCiPe 2016 and simulation, optimization and modeling procedures are done by HOMER software. Five different scenarios were considered for power outages. In the first scenario, blackouts occur without a set timetable influenced by governmental decisions and immediate requirements, reflecting the real condition of blackouts in Najaf Abad city. Cost of energy for scenarios 1, 2, 3, 4, and 5 were calculated to be 0.0712, 0.0839, $0.0759, 0.0966, and 0.0777 $/kWh, respectively. Results show that if the government schedules power outages during sunny hours to compensate for capacity shortages in the national electricity grid, the utilization of large-scale renewables becomes more cost-effective. Scenario 3 is found to be the most sustainable energy system with a cost of energy of $0.0759/kWh by installing 34 wind turbines, 49844 kW of solar panels, 5000 kW of electrolyzers, 29268 kW of converters, 34500 kW hours of batteries and 116541.5 mWh per year of the national network. Furthermore, the comparative endpoint impacts of the five scenarios obtained by the ReCiPe 2016 method 36.38, 16, 17.20, 14.29 and 23.38 (mPt kWh -1) was reported, respectively and the fourth scenario with a 62 percent reduction in pollutants compared to the baseline scenario was recognized as the most sustainable scenario in terms of the environment. | ||
کلیدواژهها [English] | ||
Life cycle assessment, Hybrid system, Grid outage, Cost of energy, HOMER | ||
مراجع | ||
Abdin, Z., & M´erida, W. (2019). Hybrid energy systems for off-grid power supply and hydrogen production based on renewable energy: a techno-economic analysis. Energy Conversion and Management, 196, 1068–1079. https://doi.org/10.1016/j.enconman.2019.06.068. Ahmadi, M M., Hosseinzadeh-Bandbafha, H., Le, QD., Tran, T Kh., Ikhwanuddin, M., Lam., Sh., Truong, Ph., Wanxi, P., Hong Quan, N., Aghbashlo, M., & Tabatabaei, M. (2021). A multi-approach framework for developing feasible, viable, and sustainable hybrid energy systems in remote areas: The case of Con Dao island in Vietnam. Energy Conversion and Management, 426,139072. https://doi.org/10.1016/j.enconman.2021.114418. Akhtari, M. R., & Baneshi, M. (2019). Techno-economic assessment and optimization of a hybrid renewable co-supply of electricity, heat and hydrogen system to enhance performance by recovering excess electricity for a large energy consumer. Energy Conversion and Management, 188, 131–141. Al-falahi, M.D., Jayasinghe, S.D., & Enshaei, H. (2017). A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system, Energy Conversion and Management, 143, 252–274, https://doi.org/10.1016/j.enconman.2017.04.019. Ali, F., Ahmar, M., Jiang, Y., & Al Ahmad, M. (2020). A techno-economic assessment of hybrid energy system in rural Pakistan. Energy, 215,119103. https://doi.org/10.1016/j.energy.2020.119103. Asrari, A., Ghasemi, A., & Javidi, MH. (2012). Economic evaluation of hybrid renewable energy systems for rural electrification in Iran—a case study. Renewable and Sustainable Energy Reviews, 16(3),123–30. https://doi.org/10.1016/j.rser.2012.02.052. Assaker, G., & O’Connor, P. (2021). eWOM platforms in moderating the relationships between political and terrorism risk, destination image, and travel intent: The case of Lebanon. Journal of Travel Research, 60(3), 503–519. https://doi.org/10.1177/ 0047287520922317. Ayodele, TR., Ogunjuyigbe, ASO., & Akinola, OA. (2017). n-split generator model: An approach to reducing fuel consumption, LCC, CO2 emission and dump energy in a captive power environment. Sustainable Production and Consumption, 12, 193–205. https://doi.org/10.1016/j.spc.2017.07.006. Aziz, A.S., Tajuddin, M.F.N., Adzman, M.R., Azmi, A., Ramli, M.A.M. (2019). Optimization and sensitivity analysis of standalone hybrid energy systems for rural electrification: A case study of Iraq. Renewable Energy,138, 775–792. https://doi.org/10.1016/j.renene.2019.02.004. Baseer, M. A., Alqahtani, A., Rehman, S. (2019).Techno-economic design and evaluation of hybrid energy systems for residential communities: Case study of Jubail industrial city. Journal of Cleaner Production, 237, 117806, 2019/11/10/ 2019. Belmili, H., Haddadi, M., Bacha, S., Almi, M.F., & Bendib, B. (2014). Sizing stand-alone photovoltaic-wind hybrid system: Techno-economic analysis and optimization. Renewable and Sustainable Energy Reviews, 30(2), 821–832. https://doi.org/10.1016/j.rser.2013.11.011. Bhattacharyya, S. C. (2011). Energy Economics: Concepts, Issues, Markets and Governance. Springer, Pages 249-274,527-563. Brandoni, C., Bošnjaković, B., (2017). HOMER analysis of the water and renewable energy nexus for water-stressed urban areas in Sub-Saharan Africa. Journal of Cleaner Production, 155, 105–118. https://doi.org/10.1016/j.jclepro.2016.07.114. Come Zebra, EI., Windt, HJ., Nhumaio, G., & Faaij, APC. (2021). A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries. Renewable and Sustainable Energy Reviews, 144, 111036. https://doi.org/10.1016/j.rser.2021.111036. Duman, A.C., & Güler, Ö. (2018). Techno-economic analysis of off-grid PV/wind/fuel cell hybrid system combinations with a comparison of regularly and seasonally occupied households. Sustainable Cities and Society, 42, 107-126. https://doi.org/10.1016/j. scs.2018.06.029. Erdinc, O., & Uzunoglu, M. (2012). Optimum design of hybrid renewable energy systems: Overview of different approaches. Renewable and Sustainable Energy Reviews, 16(3), 1412–1425. https://doi.org/10.1016/j.rser.2011.11.011 . Ghenai, C., Salameh, T., & Merabet, A. (2020). Technico-economic analysis of off grid solar PV/Fuel cell energy system for residential community in desert region. International Journal of Hydrogen Energy, 45(20), 11460–11470. https://doi.org/10.1016/j.ijhydene.2018.05.110. Han, X., Lv, F, Li, J, Zeng, F. (2024). Flexible interactive control method for multi-scenario sharing of hybrid pumped storage-wind photovoltaic power generation. Journal of Energy Storage. 100, 113590. https://doi.org/10.1016/j.est.2024.113590. Haratian, M., Tabibi, P., Sadeghi, M., Vaseghi, B., Poustdouz, A. (2018). A renewable energy solution for stand-alone power generation: A case study of KhshU Site-Iran. Renewable Energy, 125, 926–935. https://doi.org/10.1016/j.renene.2018.02.078. Hasan, S., Zeyad, M., Ahmed, S.M.M., Anubhove, M.S.T. (2023). Optimization and planning of <scp>renewable energy sources</scp> based microgrid for a residential complex. Environmental Progress & Sustainable Energy . Energy 42. https://doi.org/10.1002/ep.14124 Jahangir, M.H., Fakouriyan, S., Vaziri Rad, M.A., Dehghan, H. (2020). Feasibility study of on/off grid large-scale PV/WT/WEC hybrid energy system in coastal cities: A case-based research. Renewable Energy,162, 2075–2095. https://doi.org/10.1016/j.renene.2020.09.131. Kennedy, N., Miao, C., Wu, Q., Wang, Y., Ji, J., & Roskilly, T. (2017). Optimal hybrid power system using renewables and hydrogen for an isolated island in the UK. Energy Procedia, 105, 1388–1393. https://doi.org/10.1016/j.egypro.2017.03.517. Khajerezaei, M., Yousefi, Gh., Latify, Shayesteh, E. (2020). Calculating the cost of power outages and how to optimally allocate outages to subscribers. Iranian Journal Of Electrical and Computer Engineering.18(3), 169-177. https://sid.ir/paper/392610/fa. (In Persian). Kiehbadroudinezhad, M., Merabet, A., Al-Durra, A., Hosseinzadeh-Bandbafha, H., Wright, M., El-Saadany, E., (2022). Towards a sustainable environment and carbon neutrality: Optimal sizing of standalone, green, reliable, and affordable water-power cogeneration systems. Science of The Total Environment, 912, https://doi.org/10.1016/j.scitotenv.2023.168668. Kiehbadroudinezhad, M., Merabet, A., Rajabipour, A., Cada, M., Kiehbadroudinezhad, Sh., Khanali, M., Hosseinzadeh-Bandbafha, H., (2024). Optimization of wind/solar energy microgrid by division algorithm considering human health and environmental impacts for power-water cogeneration. Energy Conversion and Management, 252, https://doi.org/10.1016/j.enconman.2021.115064. Krishan, O., & Suhag, S. (2020). Grid-independent PV system hybridization with fuel cell-battery/supercapacitor: optimum sizing and comparative techno-economic analysis. Sustainable Energy Technologies and Assessments, 37, 100625. https://doi.org/10.1016/j.seta.2019.100625. Malheiro, A., Castro, PM., Lima, RM., & Estanqueiro, A. (2015). Integrated sizing and scheduling of wind/ PV/diesel/battery isolated systems. Renewable Energy, 83, 646–57. Mayer, M.J., Szil´agyi, A., Gr´of, G. (2020). Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm. Applied Energy, 269, https://doi.org/10.1016/j.apenergy.2020.115058. Nagapurkar, P., Smith, J.D., (2019). Techno-economic optimization and environmental Life Cycle Assessment (LCA) of microgrids located in the US using genetic algorithm, Energy Conversion and Management,181 ,272–291, http://dx.doi.org/10.1016/j.enconman.2018.11.072. Nowroozipour, M., Tabatabaei koloor, R., Motevali, A. (2023). Environmental Impact Assessment of Electricity Generation in Wind Power Plants (Case Study: Kahak Qazvin and Aqkand Miyaneh). Journal of Agricultural Machinery. 13(4),405-422. https://doi.org/10.22067/jam.2022.76180.1102. (In Persian). Olabi, AG., Ghoniem, RM., Alami, AH., & Abdelkareem, MA. (2023). Optimal Sizing and Management of Hybrid Renewable Energy System for DC-Powered Commercial Building. Buildings, 13,2109. https://doi.org/10.3390/buildings13082109. Sackey, D.M., Amoah, M ., B. Jehuri, A., Owusu-Manu, D., Acapkovi, A. (2023). Techno-economic analysis of a microgrid design for a commercial health facility in Ghana- Case study of Zipline Sefwi-Wiawso. Scientific African. 19, https://doi.org/10.1016/j.sciaf.2023.e01552. Smith, C., Burrows, J., Scheier, E., Young, A., Smith, J., Young, T., & Gheewala, Sh. (2015). Comparative Life Cycle Assessment of a Thai Island's diesel/PV/wind hybrid microgrid. Renewable Energy, 80, 85-100. https://doi.org/10.1016/j.renene.2015.01.003. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., & Averyt, K. (2007). Climate Change 2007: The Physical Science Basis. IPCC WG1 Fourth Assessment Report. Tamjid Shabestari, S., Kasaeian, A., Vaziri Rad, M. A., Forootan Fard, H., Yan, W. M., & Pourfayaz, F. (2022). Techno-financial evaluation of a hybrid renewable solution for supplying the predicted power outages by machine learning methods in rural areas. Renewable Energy, 194, 1303–1325. https://doi.org/10.1016/j.renene.2022.05.160. Toopshekan, A., Ahmadi, E., Abedian, A., Vaziri Rad, M.A., (2024). Techno-economic analysis, optimization, and dispatch strategy development for renewable energy systems equipped with Internet of Things technology. Energy, 296, 131176. https://doi.org/10.1016/j.energy.2024.131176. Vaziri Rad, M.A., Forootan Fard, H., Khazanedari, K., Toopshekan, A., Ourang, S., Khanali, M., Gorjian, S., Fereidooni, L., Kasaeian, A. (2024). A global framework for maximizing sustainable development indexes in agri-photovoltaic-based renewable systems: Integrating DEMATEL, ANP, and MCDM methods. Applied Energy, 360. https://doi.org/10.1016/j.apenergy.2024.122715. Wang, R., Lam, C. M., Hsu, S. C., & Chen, J. H. (2019). Life cycle assessment and energy payback time of a standalone hybrid renewable energy commercial microgrid: a case study of Town Island in Hong Kong. Applied Energy, 250, 760–775. https://doi.org/10.1016/j.apenergy.2019.04.183. | ||
آمار تعداد مشاهده مقاله: 71 تعداد دریافت فایل اصل مقاله: 48 |