
تعداد نشریات | 162 |
تعداد شمارهها | 6,693 |
تعداد مقالات | 72,239 |
تعداد مشاهده مقاله | 129,221,472 |
تعداد دریافت فایل اصل مقاله | 102,050,502 |
تأثیر لئوناردیت بر ویژگیهای جذب و واجذب بور در خاکهای آهکی | ||
تحقیقات آب و خاک ایران | ||
دوره 56، شماره 1، فروردین 1404، صفحه 43-54 اصل مقاله (2.05 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2024.382955.669798 | ||
نویسندگان | ||
ریحانه عباسی عیسی کان1؛ بهنام دولتی* 2؛ ابراهیم سپهر3؛ مرضیه پیری4 | ||
1دانشجوی دکتری گروه علوم خاک، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران | ||
2استادیار گروه علوم خاک، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران | ||
3استاد گروه علوم خاک، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران | ||
4گروه علوم خاک، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران | ||
چکیده | ||
فرایندهای جذب سطحی و واجذب نقش تعیینکنندهای بر حلالیت بور در محلول خاک دارند. بهمنظور بررسی تأثیر لئوناردیت بر روی فرایندهای جذب و واجذب بور، آزمایشی بر روی 4 نمونه خاک آهکی در سه سطح صفر، 2 و 4 درصد وزنی و 9 سری غلظتی بور (0-120 میلیگرم بر لیتر) با محلول زمینه سدیم کلرید 03/0 مولار انجام شد. برای تعیین واجذب بور از سدیم کلرید 03/0 مولار استفاده شد. دادههای جذب بور با مدلهای لانگمویر (96/0-85/0=R2)، فروندلیچ (88/0-62/0=R2)، تمکین (98/0-77/0= R2) و دوبیین-رادوشکوویچ (99/0-94/0=R2) برازش داده شد. نتایج نشان داد با افزودن لئوناردیت پارامترهای جذب شامل حداکثر جذب تک لایهای لانگمویر(qmax)، انرژی جذب لانگمویر (KL) و حداکثر ظرفیت جذب دوبینین- رادشکویچ (qs) کاهش یافت. بهطوریکه کاربرد 4 درصد لئوناردیت موجب کاهش 32 درصد qmax در خاک 1 (با حداکثر میزان آهک) شد. متوسط انرژی جذب (E) محاسبه شده از طریق معادله دوبینین- رادشکویچ نشان دهنده سازوکار جذب فیزیکی بور بوسیله خاکهای مورد مطالعه میباشد به دلیل اینکه مقدار E کمتر از 8 کیلوژول بر مول است. بعلاوه استفاده از لئوناردیت باعث افزایش ظرفیت واجذب بور در خاکها شد و تأثیر لئوناردیت 4 درصد نسبت به 2 درصد بیشتر بود. بنابراین کاربرد لئوناردیت میتواند میزان سمیت بور در خاکها بهویژه در خاکهای آهکی را افزایش دهد. | ||
کلیدواژهها | ||
بور؛ لئوناردیت؛ همدمای جذب؛ خاک آهکی؛ واجذب | ||
عنوان مقاله [English] | ||
The effect of leonardite on the adsorption and desorption characteristics of boron in calcareous soils | ||
نویسندگان [English] | ||
Reyhaneh Abbasi Esakan1؛ Behnam Dovlati2؛ Ebrahim Sepehr3؛ Marziyeh Piri4 | ||
1. Department of Soil Science, Faculty of Agriculture, University of Urmia, Urmia | ||
2Department of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran | ||
3Department of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran | ||
4Department of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran | ||
چکیده [English] | ||
The adsorption and desorption processes play a crucial role in the solubility of boron (B) in soil solutions. To investigate the effect of leonardite on the adsorption and desorption processes of B, an experiment was conducted on four calcareous soil samples at three weight levels of 0%, 2%, and 4%, along with nine B concentration series (0-120 mg/L) using a 0.03 M sodium chloride background solution. A 0.03 M sodium chloride solution was utilized for the desorption of boron. The B adsorption data were fitted to Langmuir (R² = 0.85-0.96), Freundlich (R² = 0.62-0.88), Temkin (R² = 0.77-0.98), and Dubinin-Radushkevich (R² = 0.94-0.99) models. The results indicated that the addition of leonardite reduced the adsorption parameters of B, including the maximum single-layer adsorption of Langmuir (qmax) and the Langmuir adsorption energy (KL), as well as the maximum adsorption capacity of Dubinin-Radushkevich (qs). Applying 4% of leonardite resulted in a 32% reduction in qmax in soil 1. The average adsorption energy (E) calculated using the Dubinin-Radushkevich equation indicates a physical adsorption of B in soils, as E is less than 8 kJ/mol. Furthermore, application of leonardite inceased desorption of B in soils, leonardite's effect was 4% more than 2%. Therefore, the application of leonardite can increase the boron toxicity levels in soils, especially in calcareous soils. | ||
کلیدواژهها [English] | ||
Boron, Leonardite, Adsorption isotherm, Calcareous soil, Desorption | ||
مراجع | ||
Abood, N. K., & Sherif, A. M. (2022). Effect of humic acid on adsorption and desorption of boron in saline calcareous soil. Indian Journal of Ecology, 49, 432-438. Ahmad, N., Arsyad, F.S., Royani, I., & Lesbani, A. (2022). Adsorption of methylene blue on magnetite humic acid: kinetic, isotherm, thermodynamic, and regeneration studies. Results in Chemistry, 4, 100-629. Al-dhawi, B. N. S., Kutty, S. R. M., Jagaba, A. H., Aminu, N., Birniwa, A. H., Al-Shawesh, G. A. M., ... & Al-Yaari, A. (2024). Boron adsorption from aqueous solutions through column study: desorption mechanisms, regeneration techniques, and kinetic insights. Desalination and Water Treatment, 320, 100586. Al-Ameri, B. H. (2019). Boron desorption kinetic in calcareous soils. Journal of Agricultural Science, 11(5):525. Al-Temimi, A.O.A.F. (2019). Boron desorption in different calcareous soils texture. Agricultural Research, 24(1), 14-22. Arslan, H., Eskikaya, O., Bilici, Z., Dizge, N., & Balakrishnan, D. (2022). Comparison of Cr(VI) adsorption and photocatalytic reduction efficiency using leonardite powder. Chemosphere, 300, 134-492. Bai, C., Zhang, H., luo, Q., Ye, X., Liu, H., Li, Q., Li, J., & Wu, Z. (2023). Boron separation by adsorption and flotation with Mg-Al-LDHs and SDBS from aqueous solution. Chinese Journal of Chemical Engineering, 4,34-65. Bontpart, T., Weiss, A., Vile, D., Gérard, F., Lacombe, B., Reichheld, J.P., & Mari, S. (2024). Growing on calcareous soils and facing climate change. Trends in Plant Science, 4, 33-41. Boparai, A.K., & Manchanda, J.S. (2018). Extractability of available boron and its sequential fractionation in alkaline calcareous soils of India. Communications in Soil Science and Plant Analysis, 49(17), 2197-2208. Bower, C. A., Reitemeier, R., & Fireman, M. (1952). Exchangeable cation analysis of saline and alkali soils. Soil science, 73, 251-262. Chen, X., Hossain, F., Duan, C., Lu, J., Tsang, Y.F., Islam, S., & Zhou, Y. (2022). Isotherm models for adsorption of heavy metals from water—A review. Chemosphere, 307, 135-545. Choudhary, R. S., Mondal, A. K., Sharma, V., Puniya, R., Bhanwaria, R., Yadav, N. K., & Jhajhra, S. (2023). Effect of Organic Manures and Boron Application on Yield Attributes and Yield of Mustard (Brassica junciea L.) under Jammu Region. Communications in Soil Science and Plant Analysis, 54(8), 1024-1041. Day, S., & Aasim. M. (2020). Role of boron in growth and development of plant: Deficiency and toxicity perspective.Plant Micronutrients: Deficiency and Toxicity Management, 5, 435–53. Gee, G., & Bauder, J. (1979). Particle size analysis by hydrometer: a simplified method for routine textural analysis and a sensitivity test of measurement parameters. Soil Science Society of America Journal, 43, 1004-1007. Gökmen, F., Usta, S., & Uygur, V. (2022). Boron Adsorption and Desorption in Soils with High Boron Content. International Journal of Agriculture Forestry and Life Sciences, 6(2), 55-59. Goldberg, S., & Suarez, D. L. (2012). Role of organic matter on boron adsorption-desorption hysteresis of soils. Soil Science, 177, 417-423. Hayes, M. H. B., &Swift, R. S. (2020). Vindication of humic substances as a key component of organic matter in soil and water. Adv. Agron, 163, 1–37. Hoshan, M. N. (2016). The role of salts and organic matter in boron adsorption in calcareous soils from southern Iraq. Basra Journal of Agricultural Sciences, 29(2): 514-522. Jing, K., Min, X., Song, W., Xu, D., & Li, X. (2024). Effect of filling materials on reconstructed soil phosphorus adsorption and desorption in mining area. Soil and Tillage Research, 2(5), 105-895. Keren, R. (1996). Boron. p. 603-626. In D. L. Sparks et al. (ed.) Methods of soil analysis. Part 3. Chemical methods. Kumar, N., Meena, M. C., Dwivedi, B. S., Datta, S. P., & Dey, A. (2021). Comparison of kinetic models for boron adsorption in major soil groups of India. Journal of the Indian Society of Soil Science, 69 (1), 45–49. Lemarchand, E., Schott, J., & Gaillardet, J. (2005). Boron isotopic fractionation related to boron sorption on humic acid and the structure of surface complexes formed. Geochimica et Cosmochimica Acta, 69(14), 3519-3533. Mahdavi, S., Tarhani, Z., Sayyahzadeh, A. H., & Naderi Peikam, E. (2020). Effect of nano-MgO, biochar and humic acid on boron stabilization in soil in bath and leaching columns. Soil and Sediment Contamination: An International Journal, 29(6), 595-612. Majidi, A. 2010. Interaction between boron adsorbed with phosphorous and silicon in calcareous soils. Ph. D. thesis. Tarbiat Modares University, Tehran, Iran. 215 pp. (in Persian). Majidi, A., & Rahnemaie, R. (2015). Effect of physical and chemical characteristics of calcareous soils on adsorption and desorption reaction of boron surface. Journal of Soil Researches, 29(3), 321-334. Majidi, A., Rahnemaie, R., Hassani, A., & Malakouti, M. J. (2010). Adsorption and desorption processes of boron in calcareous soils. Chemosphere, 80, 733-739. Meng, F., Yuan, G., Larson, S.L., Ballard, J.H., White, J.R., Arslan, Z., & Han, F.X. (2019). Kinetics and thermodynamics of uranium (VI) adsorption onto humic acid derived from leonardite. International Journal of Environmental Research and Public Health, 16(9), 15-52. Nasir, K. M. (2019). Effect of ionic strength from different salt sources on boron adsorption in calcareous soils. Iraqi Journal of Agricultural Sciences, 50(6), 1512-1521 Öcal, Z. B., Öncel, M. S., Keskinler, B., Khataee, A., & Karagündüz, A. (2024). Sustainable treatment of boron industry wastewater with precipitation-adsorption hybrid process and recovery of boron species. Process Safety and Environmental Protection, 182, 719-726. Piri, M., Sepehr, E., & Ghavidel, S. Z. (2023). Dosing of leonardite/struvite compounds as phosphorus fertilizers increased biomass and nutrient uptake in a calcareous soil. Journal of Cleaner Production, 430, 139-723. Ravan, S., Sepehr, E., &Hamzenejhad, R. (2021). Effect of Leonardite on Adsorption Behavior and Distribution of Chemical Forms of Zinc in a Sandy Loam Soil. Water and Soil Science, 31(1),103-117. Rayment, G., & Higginson, F. R. (1992). "Australian laboratory handbook of soil and water chemical methods," Inkata Press Pty Ltd. Sakulthaew, C., Watcharenwong, A., Chokejaroenrat, C., & Rittirat, A. (2021). Leonardite-derived biochar suitability for effective sorption of herbicides. Water, Air, & Soil Pollution, 232(2), 36. Thomas, G. (1996). Soil and Soil acidity, P 475-490. Methods of Soil Analysis. Part III. 3rd Ed., Journal of The American Society of Agronomy., Madison, WI. Tlili, A., Dridi, I., De Feudis, M., Vittori Antisari, L., & Jedidi, N. (2024). Boron characterization and distribution in particle-size fractions and humic substances in forest and agricultural Tunisian soils. Euro-Mediterranean Journal for Environmental Integration, 6, 1-14. Van Eynde, E., Mendez, J. C., Hiemstra, T., & Comans, R. N. (2020). Boron adsorption to ferrihydrite with implications for surface speciation in soils: Experiments and modeling. ACS Earth and Space Chemistry, 4(8), 1269-1280. Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science 37, 29-38. Yalçın, M. (2023). Determination of useful boron content of the soils of Kırıkhan-Kumlu region of Hatay province and their relationship with some soil properties. Eurasian Journal of Forest Science, 11(2), 54-65. Zheng, Y., Zhang, Z., Chen, Y., An, S., Zhang, L., Chen, F., & CAi, W. (2022). Adsorption and desorption of Cd in reclaimed soil under the influence of humic acid: characteristics and mechanisms. International Journal of Coal Science & Technology, 9(1), 7. | ||
آمار تعداد مشاهده مقاله: 45 تعداد دریافت فایل اصل مقاله: 116 |