
تعداد نشریات | 162 |
تعداد شمارهها | 6,694 |
تعداد مقالات | 72,251 |
تعداد مشاهده مقاله | 129,281,648 |
تعداد دریافت فایل اصل مقاله | 102,141,339 |
بررسی تاثیر برخی مواد آلی، معدنی و باکتریهای محرک رشد گیاه در اصلاح خصوصیات فیزیکی و شیمیایی یک خاک اِنتیسول شنی | ||
تحقیقات آب و خاک ایران | ||
دوره 56، شماره 1، فروردین 1404، صفحه 55-74 اصل مقاله (2.04 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2024.383092.669803 | ||
نویسندگان | ||
سید محمد حسینی بادآشیانی1؛ احمد حیدری* 2؛ علیرضا راهب3؛ حسن اعتصامی4؛ محمدرضا بی همتا5 | ||
1گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران. | ||
2گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه تهران، کرج، ایران. | ||
3گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشکدگان کشاورزی و منتبع طبیعی، دانشگاه تهران، کرج، ایران | ||
4گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
5گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران. | ||
چکیده | ||
هدف این مطالعه دستیابی به یک ترکیب مناسب از مواد آلی، معدنی و ریزجانداران برگزیده برای اصلاح خصوصیات فیزیکی، شیمیایی و زیستی لایه سطحی (20-0 سانتیمتری) یک خاک شنی غیرشور (انتیسول)، از رسوبات بادی نجمآباد کرج بود. طرح آزمایشی فاکتوریل کاملا تصادفی شامل سه سطح بنتونیت B0)، B20 و (B40 به ترتیب 0، 20 و 40 Mgha-1، سه سطح کربوکسیمتیل سلولز (C0،C3 و C5) به ترتیب 0، 3 و 5 gkg-1 و مخلوط دو جدایه از باکتری اندوفیت (Pseudomonas sp) و رایزوشیت (Pantoea agglomerans) در سه سطح M0)، M20 و M40) به ترتیب 0، 20، و 40 mLkg-1 و مجموعا 27 تیمار با 3 تکرار (81 واحد آزمایشی) تهیه و اجرا شد. جهت تجزیه و تحلیل دادهها و شناسایی تیمارهای برتر از روشهای آماری چند متغیره شامل تحلیل مولفههای اصلی، خوشهبندی سلسله مراتبی و خوشهبندی دو مرحلهای استفاده شد. طبق خوشهبندی دو مرحلهای و بر اساس درجه اهمیت نسبی (RI) متغیرهای آهن قابل جذب (RI=1) ، میانگین وزنی قطر خاکدانهها (RI=0.99) ، رطوبت ظرفیت زراعی (RI=0.97)، نیتروژن کل (RI=0.87)، پتاسیم قابل جذب (RI=0.83) و آنزیم دهیدروژناز (RI=0.8) به ترتیب به عنوان مهمترین متغیرها شناخته شدند. متغیرهای آهن قابل جذب با دامنه تغییر 75/1 تا 08/7 mgkg-1، میانگین وزنی قطر خاکدانهها با دامنه تغییر 31/0 تا 15/1 mm، نیتروژن کل با دامنه تغییر 014/0 تا 06/0 %، رطوبت ظرفیت زراعی با دامنه تغییر 03/8 تا 82/12 %، پتاسیم قابل جذب با دامنه تغییر 8/280 تا 66/416 mgkg-1و آنزیم دهیدروژناز با دامنه تغییر 07/0 تا 148/0 μgTPF(g soil 24h)-1 دارای بیشترین تاثیر در تفکیک تیمارها به خوشههای مختلف بودند. نتایج این مطالعه نشان داد تیمارهای B20 C5 M20، B40 C5 M10، B40 C5 M20، B40 C3 M20 و B40 C3 M10 از عملکرد بهتری جهت اصلاح برخی خصوصیات خاک نسبت به سایر تیمارها برخوردار هستند. | ||
کلیدواژهها | ||
اندوفیت؛ بنتونیت؛ رایزوشیت؛ کربوکسیمتیل سلولز | ||
عنوان مقاله [English] | ||
Investigating the effects of some selected organic, inorganic materials and plant growth promoting bacteria in modifying the physical and chemical properties of a sandy Entisol | ||
نویسندگان [English] | ||
Seyed Mohammad Hoseini Badashiani1؛ Ahmad Heidari2؛ Alireza Raheb3؛ Hassan Etesami4؛ Mohammad Reza Bihamta5 | ||
1Soil Science Department, College of Agriculture and natural Resources, University of Tehran, Karaj, P.O.Box 4111, Iran | ||
2Soil Science Department, Faculty of Agriculture, University of Tehran, Karaj, Iran. | ||
3Soil Science Department, ّFaculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, P.O.Box 4111, Iran | ||
4Soil Science Department, College of Agriculture and natural Resources, University of Tehran, Karaj, P.O.Box 4111, Iran | ||
5Department Of Agronomy, College of Agriculture and Natural Resources, University of Tehran, Karaj, P.O.Box 4111, Iran | ||
چکیده [English] | ||
The aim of this study is to combine organic, inorganic materials and selected microorganisms to modify the physical, chemical and biological characteristics of a non-saline sandy Entisol (0-20 cm), from NajmAbad, Karaj, aeolian sediments. This research was conducted in the frame of factorial Completely Randomized Design (CRD) with three levels of bentonite 0, 20 and 40 Mgha-1, carboxymethyl cellulose 0, 3 and 5 gkg-1 and a mixture of two isolates of endophytic bacteria (Pseudomonas sp) and rhizosheath (Pantoea agglomerans) at three levels 0, 20, and 40 mLkg-1, in a total of 27 treatments with 3 replicates (81 samples). Multivariate statistical methods, including Principal Component Analysis (PCA), hierarchical clustering, and two-step clustering were utilized for the analysis. Based on the results of the two-step clustering, the following variables were identified as the most significant variables: available Fe (RI=1), mean weighted diameter of peds (RI=0.99), field capacity (RI=0.97), total N (RI=0.87), available K (RI=0.83), and dehydrogenase activity (RI=0.8). Variables including Fe available with a range of 1.75 to 7.08 mgkg-1, mean weight diameter with a range of 0.31 to 1.15 mm, total nitrogen with a range of 0.014 to 0.06%, field capacity with a range of 8.03 to 12.82%, available K with a range of 280.8 to 416.66 mgkg-1 and dehydrogenase enzyme activity with a range of 0.07 to 0.148 μgTPF (gsoil 24 h)-1, had the highest effect in the clustering treatments. The results of this study showed that the treatments B20C5M20, B40C5M10, B40C5M20, B40C3M20 and B40C3M10 have better performance to modify certain soil properties compared to other treatments. | ||
کلیدواژهها [English] | ||
endophyte, bentonite, rhizosheath, carboxymethyl cellulose | ||
مراجع | ||
Aleem, M., Hanna, N., & Sabry, S. (2000). Relationship between wheat root characteristics and grain yield in sandy and clay soils. Alghamdi, A. G., Majrashi, M. A., & Ibrahim, H. M. (2023). Improving the Physical Properties and Water Retention of Sandy Soils by the Synergistic Utilization of Natural Clay Deposits and Wheat Straw. Sustainability, 16(1), 46. Ali, B., Hafeez, A., Afridi, M. S., Javed, M. A., Sumaira, Suleman, F., Nadeem, M., Ali, S., Alwahibi, M. S., & Elshikh, M. S. (2023). Bacterial-mediated salinity stress tolerance in maize (Zea mays L.): A fortunate way toward sustainable agriculture. ACS omega, 8(23), 20471-20487. Alidoust, E., Afyuni, M., Hajabbasi, M. A., & Mosaddeghi, M. R. (2019). Application of multivariate statistical methods for evaluating soil quality indices in Lordegan semiarid region. Applied Soil Research, 7(3), 192-206. Anderson, J. P. (1982). Soil respiration. Methods of soil analysis: part 2 chemical and microbiological properties, 9, 831-871. Babla, M., Katwal, U., Yong, M.-T., Jahandari, S., Rahme, M., Chen, Z.-H., & Tao, Z. (2022). Value-added products as soil conditioners for sustainable agriculture. Resources, conservation and recycling, 178, 106079. Bednik, M., Medyńska-Juraszek, A., Dudek, M., Kloc, S., Kręt, A., Łabaz, B., & Waroszewski, J. (2020). Wheat straw biochar and NPK fertilization efficiency in sandy soil reclamation. Agronomy, 10(4), 496. Bell, R., & Seng, V. (2007). The management of agroecosystems associated with sandy soils. Management of tropical sandy soils for sustainable development: proceedings of the International Conference on the Management of Tropical Sandy Soils, Khon Kaen, Thailand, Blake, G. (1986). Bulk density. Methods of Soil Analysis. Part, 1. Bottomley, P. J., Angle, J. S., & Weaver, R. (2020). Methods of soil analysis, Part 2: Microbiological and biochemical properties (Vol. 12). John Wiley & Sons. Cassel, D., & Nielsen, D. (1986). Field capacity and available water capacity. Methods of soil analysis: Part 1 Physical and mineralogical methods, 5, 901-926. Djajadi, Abbott, L. K., & Hinz, C. (2012). Synergistic impacts of clay and organic matter on structural and biological properties of a sandy soil. Geoderma, 183-184, 19-24. El-Nagar, D. A., & Sary, D. H. (2021). Synthesis and characterization of nano bentonite and its effect on some properties of sandy soils. Soil and tillage research, 208, 104872. Herawati, A., Mujiyo, M., Dewi, W. S., Syamsiyah, J., & Romadhon, M. R. (2024). Improving microbial properties in Psamments with mycorrhizal fungi, amendments, and fertilizer. Eurasian Journal of Soil Science, 13(1), 59-69. Hussain, Z., Cheng, T., Irshad, M., Khattak, R. A., Yao, C., Song, D., & Mohiuddin, M. (2022). Bentonite clay with different nitrogen sources can effectively reduce nitrate leaching from sandy soil. Plos one, 17(12), e0278824. Iqbal, R., Valipour, M., Ali, B., Zulfiqar, U., Aziz, U., Zaheer, M. S., Sarfraz, A., Javed, M. A., Afridi, M. S., & Ercisli, S. (2024). Maximizing wheat yield through soil quality enhancement: A combined approach with Azospirillum brasilense and bentonite. Plant Stress, 11, 100321. Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and psychological measurement, 20(1), 141-151. Kemper, W., & Chepil, W. (1965). Size distribution of aggregates. Methods of soil analysis: Part 1 physical and mineralogical properties, including statistics of measurement and sampling, 9, 499-510. Khan, N., Bano, A., & Babar, M. A. (2017). The root growth of wheat plants, the water conservation and fertility status of sandy soils influenced by plant growth promoting rhizobacteria. Symbiosis, 72, 195-205. Leech, N. L., Barrett, K. C., & Morgan, G. A. (2014). IBM SPSS for intermediate statistics: Use and interpretation. Routledge. Lorenzi, A. S., Bonatelli, M. L., Chia, M. A., Peressim, L., & Quecine, M. C. (2022). Opposite sides of Pantoea agglomerans and its associated commercial outlook. Microorganisms, 10(10), 2072. Malakouti, M., Moshiri, F., & Ghaibi, M. (2005). Optimum levels of nutrients in soil and some agronomic and horticultural crops. Soil and Water Research Institue. Technical Bulletin(405). Martín-Sanz, J. P., de Santiago-Martín, A., Valverde-Asenjo, I., Quintana-Nieto, J. R., González-Huecas, C., & López-Lafuente, A. L. (2022). Comparison of soil quality indexes calculated by network and principal component analysis for carbonated soils under different uses. Ecological indicators, 143, 109374. Martínez, J. I., Gómez-Garrido, M., Gómez-López, M. D., Faz, Á., Martínez-Martínez, S., & Acosta, J. A. (2019). Pseudomonas fluorescens affects nutrient dynamics in plant-soil system for melon production. Chilean journal of agricultural research, 79(2), 223-233. McKissock, I., Walker, E., Gilkes, R., & Carter, D. (2000). The influence of clay type on reduction of water repellency by applied clays: a review of some West Australian work. Journal of hydrology, 231, 323-332. Mehmood, N., Saeed, M., Zafarullah, S., Hyder, S., Rizvi, Z. F., Gondal, A. S., Jamil, N., Iqbal, R., Ali, B., & Ercisli, S. (2023). Multifaceted impacts of plant-beneficial pseudomonas spp. in managing various plant diseases and crop yield improvement. ACS omega, 8(25), 22296-22315. Mi, J., Gregorich, E. G., Xu, S., McLaughlin, N. B., & Liu, J. (2020). Effect of bentonite as a soil amendment on field water-holding capacity, and millet photosynthesis and grain quality. Scientific Reports, 10(1), 18282. Muhammad, H., Fahad, S., Saud, S., Hassan, S., Nasim, W., Ali, B., Hammad, H. M., Bakhat, H. F., Mubeen, M., & Khan, A. Z. (2023). A paradigm shift towards beneficial microbes enhancing the efficiency of organic and inorganic nitrogen sources for a sustainable environment. Land, 12(3), 680. Nabiollahi, K., Taghizadeh-Mehrjardi, R., Kerry, R., & Moradian, S. (2017). Assessment of soil quality indices for salt-affected agricultural land in Kurdistan Province, Iran. Ecological indicators, 83, 482-494. Nelson, D. W., & Sommers, L. E. (1980). Total nitrogen analysis of soil and plant tissues. Journal of the Association of Official Analytical Chemists, 63(4), 770-778. Ngo-Mbogba, M., Yemefack, M., & Nyeck, B. (2015). Assessing soil quality under different land cover types within shifting agriculture in South Cameroon. Soil and tillage research, 150, 124-131. Ning, S., Jumai, H., Wang, Q., Zhou, B., Su, L., Shan, Y., & Zhang, J. (2019). Comparison of the effects of polyacrylamide and sodium carboxymethylcellulose application on soil water infiltration in sandy loam soils. Advances in Polymer Technology, 2019(1), 6869454. Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Department of Agriculture. Omer, A. M., Tamer, T. M., Hassan, M. E., Khalifa, R. E., Abd El-Monaem, E. M., Eltaweil, A. S., & Mohy Eldin, M. S. (2023). Fabrication of grafted carboxymethyl cellulose superabsorbent hydrogel for water retention and sustained release of ethephon in sandy soil. Arabian Journal for Science and Engineering, 48(1), 561-572. Qin, C.-C., Abdalkarim, S. Y. H., Zhou, Y., Yu, H.-Y., & He, X. (2022). Ultrahigh water-retention cellulose hydrogels as soil amendments for early seed germination under harsh conditions. Journal of Cleaner Production, 370, 133602. Reza, S., Baruah, U., & Singh, S. (2015). Multivariate approaches for soil fertility characterization of lower Brahmaputra valley, Assam, India. Journal of the Indian Society of Soil Science, 63(4), 379-383. Sah, S., Krishnani, S., & Singh, R. (2021). Pseudomonas mediated nutritional and growth promotional activities for sustainable food security. Current Research in Microbial Sciences, 2, 100084. Semalulu, O., Elobu, P., Namazzi, S., Kyebogola, S., & Mubiru, D. (2017). Higher cereal and legume yields using Ca-bentonite on sandy soils in the dry eastern Uganda: increased productivity versus profitability. J. Agric. Res, 5(2), 140-147. Shao, F., Zeng, S., Wang, Q., Tao, W., Wu, J., Su, L., Yan, H., Zhang, Y., & Lin, S. (2023). Synergistic effects of biochar and carboxymethyl cellulose sodium (CMC) applications on improving water retention and aggregate stability in desert soils. Journal of Environmental Management, 331, 117305. Shuman, L. (1985). Fractionation method for soil microelements. Soil science, 140(1), 11-22. Sumner, M. E., & Miller, W. P. (1996). Cation exchange capacity and exchange coefficients. Methods of soil analysis: Part 3 Chemical methods, 5, 1201-1229. Suzuki, S., Noble, A. D., Ruaysoongnern, S., & Chinabut, N. (2007). Improvement in water-holding capacity and structural stability of a sandy soil in Northeast Thailand. Arid Land Research and Management, 21(1), 37-49. Walkly, A., & Black, I. (1934). An examination of digestion methods for determining soil organic matter and a proposed modification of the chromic and titration. Soil science society of America journal, 37, 29-38. Wang, Y., Gao, M., Chen, H., Chen, Y., Wang, L., & Wang, R. (2023). Fertigation and carboxymethyl cellulose applications enhance water-use efficiency, improving soil available nutrients and maize yield in salt-affected soil. Sustainability, 15(12), 9602. Wu, J., Tao, W., Wang, H., & Wang, Q. (2015). Influence of sodium carboxyl methyl cellulose on soil aggregate structureand soil water movement. Transactions of the Chinese Society of Agricultural Engineering, 31(2), 117-123. Yost, J. L., & Hartemink, A. E. (2019). Soil organic carbon in sandy soils: A review. Advances in agronomy, 158, 217-310. Zhang, L., Mi, J., Zhao, B., Cui, X., Hu, K., McLaughlin, N. B., & Liu, J. (2024). Soil Amendment Combining Bentonite and Maize Straw Improves Soil Quality Cropped to Oat in a Semi-Arid Region. Agronomy, 14(5), 1012. | ||
آمار تعداد مشاهده مقاله: 55 تعداد دریافت فایل اصل مقاله: 67 |