
تعداد نشریات | 162 |
تعداد شمارهها | 6,694 |
تعداد مقالات | 72,251 |
تعداد مشاهده مقاله | 129,281,361 |
تعداد دریافت فایل اصل مقاله | 102,140,842 |
مدلسازی جامع ظرفیتبرد منابع آب تالاب انزلی با استفاده از روش وزندهی ترکیبی AHP-Entropy- CRITIC و مدل TOPSIS-GRA | ||
تحقیقات آب و خاک ایران | ||
دوره 56، شماره 1، فروردین 1404، صفحه 105-126 اصل مقاله (1.81 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2024.384228.669817 | ||
نویسندگان | ||
مائده کیوانفر1؛ سمیه جنت رستمی* 2؛ افشین اشرف زاده3 | ||
1گروه مهندسی آب، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران. | ||
2گروه مهندسی آب، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، گیلان. | ||
3گروه مهندسی آب، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران | ||
چکیده | ||
تالابهای شهری به دلیل فرایند شهرنشینی و دفع فاضلاب با سرعت بالایی در حال نابودی هستند که تهدیدی برای کیفیت آب و منابع زندگی انسانهاست. ارزیابی ظرفیتبرد منابع آب (WRCC) در این تالابها ضروری است تا دستیابی به توسعه پایدار و همافزایی بین توسعه اقتصادی و حفاظت از منابع آب تسهیل شود. این مطالعه با ارزیابی ظرفیتبرد منابع تالاب انزلی به بررسی وضعیت این تالاب که در محدوده مطالعاتی فومنات استان گیلان واقع شده است، در یک دوره زمانی 10 ساله (1400-1391) پرداخته است. در این مطالعه، ابتدا با توجه به دادهها و اطلاعات موجود، 8 شاخص ارزیابی با درنظر گرفتن 3 زیرسیستم منابع آب، اقتصاد و محیط زیست تعریف شد. بر اساس دادهها و اطلاعات در دسترس، هر شاخص در 4 سطح I (قابل بارگیری)، سطح II (ضعیف)، سطح III (بحرانی) و سطح IV (فوق بحرانی) طبقهبندی شدند. سپس وزن هر شاخص با سه روش AHP، Entropy و CRITIC محاسبه شد و وزنهای حاصل از سه روش با روش میانگین هندسی ترکیب و تعیین شد. در ادامه، مقادیر سالانه هر یک از شاخصها به همراه وزنهای مربوطه و در 4 سطح ارزیابی به مدلی که ترکیبی از تحلیل رابطه خاکستری (GRA) و روش شباهت به گزینه ایدهآل (TOPSIS) است، اعمال شد. در نهایت بر اساس نتایج ظرفیتبرد سالانه، عوامل مانع WRCC شناسایی شدند. ارزیابی WRCC حاکی از وضعیت IV (فوق بحرانی) تالاب از سال 1392 به بعد است. زیرسیستم منابع آب در شرایط بحرانی و فوق بحرانی قرار دارد و موجب کاهش ظرفیت برد کلی میشود، در حالی که زیرسیستم اقتصادی به این ظرفیت کمک میکند. بر اساس نتایج مدل درجه مانع، چهار عامل اصلی تأثیرگذار بر ظرفیتبرد شامل کیفیت آب ورودی، درصد تامین آب مورد نیاز، درصد تامین آب نواحی بالادست و نسبت کل آب در دسترس به جمعیت هستند. | ||
کلیدواژهها | ||
درجه مانع؛ شاخصهای ارزیابی؛ ظرفیتبرد منابع آب؛ وزنهای ترکیبی | ||
عنوان مقاله [English] | ||
A Comprehensive Assessment of Water Resources Carrying Capacity in Anzali Wetland Using AHP-Entropy-CRITIC Combined Weighting Method and TOPSIS-GRA Model | ||
نویسندگان [English] | ||
Maedeh Keyvanfar1؛ Somaye Janatrostami2؛ Afshin Ashrafzadeh3 | ||
1Department of Water Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran | ||
2Department of Water Engineering, College of Agriculture, University of Guilan, Rasht, Guilan. | ||
3Department of Water Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran. | ||
چکیده [English] | ||
Urban wetlands are rapidly deteriorating due to urbanization and wastewater disposal, posing a threat to water quality and human livelihoods. Assessing the water resources carrying capacity (WRCC) of these wetlands is crucial to facilitate sustainable development and synergy between economic growth and water resource conservation. This study evaluated the WRCC of Anzali Wetland, located in the Fumanat region of Gilan Province, over a 10-year period (2011-2021). eight evaluation indicators were defined based on available data and information, considering three subsystems: water resources, economy, and environment. Each indicator was classified into four levels: I (loadable), II (weak), III (critical), and IV(Overload). The weight of each indicator was calculated using three methods: AHP, Entropy, and CRITIC. The weights obtained from the three methods were combined using the geometric mean. Subsequently, the annual values of each indicator, along with their corresponding weights and four evaluation levels, were applied to a model combining Grey Relational Analysis (GRA) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). Finally, based on the annual WRCC results, the obstacle factors were identified. The WRCC assessment indicated that the wetland has been in a overloading condition (IV) since 2013. The water resources subsystem is in a critical or overloading condition, reducing the overall carrying capacity, while the economic subsystem contributes to this capacity. According to the obstacle degree model results, the four main factors affecting the WRCC include the quality of incoming water, the percentage of water supply required, the percentage of water supply for upstream areas, and the ratio of total available water to the population. | ||
کلیدواژهها [English] | ||
Barrier Degree, Composite Weights, Evaluation Indicators, Water Resources Carrying Capacity | ||
مراجع | ||
Ait-Aoudia, M.N., Berezowska-Azzag, E., (2016). Water resources carrying capacity assessment: The case of Algeria’s capital city. Habitat International 58, 51–58. https://doi.org/ 10.1016/j.habitatint.2016.09.006. Avarideh, H. R., Safari, A. R., Homayouni, S., Khazaei, S. 2015. Nearshore bathymetry using hyperspectral remotesensing. Geospatial Engineering Journal, 6(1): 1-10. (In Persian) Chen, Q, Y., Zhu, M, T., Zhang, C.J.. et al.,2023.The driving effect of the spatial-temporal difference of water resources carrying capacity in the Yellow River Basin. Journal of Cleaner Production ,388:135709. https://doi.org/10.1016/j.jclepro.2022.135709. Chen, Y.-T., Sun, E.W., Lin, Y.-B., (2019). Coherent quality management for big data systems: a dynamic approach for stochastic time consistency. Annals of Operations Research,. 277, 3–32. https://doi.org/10.1007/s10479-018-2795-1. Cheng, Q.Y.,(2010). Structure Entropy Weight Method to Confirm the Weight of Evaluating Index. systems engineering-theory & practice,30(07):1225-1228. Gulishengmu, A., Yang, G., Tian, L., Pan, Y., Huang, Z., Xu, X., Gao, Y., Li, Y., (2023). Analysis of water resource Carrying capacity and obstacle factors based on GRATOPSIS evaluation method in Manas River basin. Water 15. https://doi.org/ 10.3390/w15020236 Hettiarachchi M., Morrison T. H., Wickramsinghe D., Mapa R., De Alwis A., McAlpine C. A., (2014). The eco-social transformation of urban wetlands: A case study of Colombo, Sri Lanka, Landscape and Urban Planning,132, 55–68. https://doi.org/10.1016/j.landurbplan.2014.08.006 Jia, Y., Wang, H., (2023). Study on water resource Carrying capacity of Zhengzhou City based on DPSIR model, 20 International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph20021394. Jiang, H., He, G., (2023). Analysis of spatial and temporal evolution of regional water resources Carrying capacity and influencing factors-Anhui Province as an example. Sustainability, 15. https://doi.org/10.3390/su151411255. Li, Q., Liu, Z., Yang, Y., Han, Y., Wang, X., (2023a). Evaluation of water resources carrying capacity in Tarim River basin under game theory combination weights, 154 Ecological Indicators. https://doi.org/10.1016/j.ecolind.2023.110609. Li, W., Jiang, S., Zhao, Y., Li, H., Zhu, Y., Ling, M., Qi, T., He, G., Yao, Y., Wang, H., (2023b). Comprehensive evaluation and scenario simulation of water resources carrying capacity: a case study in xiong’an new area, China. Ecological Indicators. 150 https:// doi.org/10.1016/j.ecolind.2023.110253. Liu, Y., Jia, R.X., Hou, X.L.,(2005). Evaluation of China’s regional sustainable utilization of water resources and its type classification. Environmental Science. 2005, 26, 42. Liu, Y.; Gao, C.; Ji, X.; Zhang, Z.; Zhang, Y.; Liu, C.; Wang, Z., (2022). Simulation of water resources carrying capacity of the Hangbu River Basin based on system dynamics model and TOPSIS method. Frontiers in Environmental Science, (2022). 10, 1045907. https://doi.org/10.3389/fenvs.2022.1045907 Lu, L., Lei, Y., Wu, T., Chen, K., (2022). Evaluating water resources carrying capacity: the empirical analysis of Hubei Province, China 2008–2020[J]. Ecological Indicators. 144, 109454 https://doi.org/10.1016/j.ecolind.2022.109454. Lv, B., Liu, C., Li, T., Meng, F., Fu, Q., Ji, Y., Hou, R., (2023). Evaluation of the water resource carrying capacity in Heilongjiang, eastern China, based on the improved TOPSIS model, 150 Ecological Indicators. https://doi.org/10.1016/j.ecolind.2023.110208. Makropoulos, C.; Natsis, K.; Liu, S.; Mittas, K.; Butler, D., (2008). Decision support for sustainable option selection in integrated urban water management. Environmental Modelling & Software. (2008). 23, 1448–1460. https://doi.org/10.1016/j.envsoft.2008.04.010 Modaberi, H., Shokoohi, A, (2019). Determining Water requirement of Anzali Wetland based on Eco-Tourism Indices within the Framework of IWRM. Irainian Journal Of Soil And Water Research. DOI:// 668633ijswr10.22059/ (In Persian) Morin T.H., Bohrer G., Naor-Azrieli L., Mesi S., Kenny W.T., Mitsch W.J., Schäfer K.V.R., (2014). The seasonal and diurnal dynamics of methane flux at a created urban wetland, Ecological Engineering, 72, 74–83. https://doi.org/10.1016/j.ecoleng.2014.02.002 Murgatroyd, A., & Hall, J. W. (2021). Selecting indicators and optimizing decision rules for long-term water resources planning. Water Resources Research, 57, e2020WR028117. https:// doi.org/10.1029/2020WR028117 Pavlacka, O., 2014. On various approaches to normalization of interval and fuzzy weights. Fuzzy Sets and Systems. 243, 110–130. https://doi.org/10.1016/j.fss.2013.07.026. Wang, G., Xiao, C., Qi, Z., Meng, F., Liang, X., (2021). Development tendency analysis for the water resource carrying capacity based on system dynamics model and the improved fuzzy comprehensive evaluation method in the Changchun city, China. Ecological Indicators. 122 https://doi.org/10.1016/j.ecolind.2020.107232. Wang, Q., Zhao, Z., Shen, N., Liu, T., (2015). Have chinese cities achieved the win-win between environmental protection and economic development? from the perspective of environmental efficiency. Ecological Indicators. 51, 151–158. https://doi.org/10.1016/j. ecolind.2014.07.022. Wang, S., Chakrabarty, A., Taha, A.F.F., (2023a). Data-driven identification of dynamic quality models in drinking water networks, 149 Journal of Water Resources Planning and Managment. https://doi.org/10.1061/jwrmd5.Wreng-5431. Wang, S., Zhang, G., (2014). Study on Comparing the comprehensive Carrying capacity among Beijing-Tianjin-Hebei region based on the rank-sum ratio. Areal Research and Development. 33, 19–25. Wang, X., Zhang, S., Tang, X., Gao, C., 2023c. Spatiotemporal heterogeneity and driving mechanisms of water resources carrying capacity for sustainable development of Guangdong Province in China. Journal of Cleaner Production. 412 https://doi.org/10.1016/j. jclepro.2023.137398. Wang, Y., Wang, J., Duan, X., Wang, L., (2023b). Assessment and simulation of water environment Carrying capacity in a River Basin using system dynamics model. Polish Journal of Environmental Studies. 32, 2893–2907. https://doi.org/10.15244/pjoes/161326. Wang, Y., Zhang, Y., Sun, W., Zhu, L., (2022). The impact of new urbanization and industrial structural changes on regional water stress based on water footprints. Sustainable Cities and Society. 79 https://doi.org/10.1016/j.scs.2022.103686. Wu, C., Zhou, L., Jin, J., Ning, S., Bai, L., (2020). Regional water resource carrying capacity evaluation based on multi-dimensional precondition cloud and risk matrix coupling model. Science of The Total Environment. 710, 136324 https://doi.org/10.1016/j. scitotenv.2019.136324. Xu, M., Chen, M., Li, Y., Jiang, Y., (2020). Analysis of water resources Carrying capacity of coastal cities along the Yangtze River based on PSR model. Journal of Coastal Research. 109 https://doi.org/10.2112/JCR-SI109-018.1. Yang, G., Dong, Z., Feng, S., Li, B., Sun, Y., Chen, M., (2021). Early warning of water resource carrying status in Nanjing City based on coordinated development index. Journal of Cleaner Production. 284, 124696 https://doi.org/10.1016/j.jclepro.2020.124696. Yu, L., (2021). Study on the essence of objective weighting method and its application in scientific and technological evaluation. Information Studies: Theory & Application 44, 50–56. https://doi.org/10.16353/j.cnki.1000-7490.2021.02.007. Zebardast, L., Jafari, H. 2011. Use of Remote Sensing in Monitoring the Trend of Changes of Anzali Wetland in Iran and Proposing Environmental Management Solution. Journal of Environmental Studies, 37(57), 1-8.. 20.1001.1.10258620.1390.37.57.7.5. (In Persian) Zeng X.T., Huang G.H., Chen H.L., Li Y.P., Kong X.M., Fan Y.R., (2016). A simulation-based water-environment management model for regional sustainability in compound wetland ecosystem under multiple uncertainties, Ecological Modelling, 334, 60–77. https://doi.org/10.1016/j.ecolmodel.2016.04.021 Zhang, J.; Zhang, C.; Shi, W.; Fu, Y., (2019). Quantitative evaluation and optimized utilization of water resources-water environment carrying capacity based on nature-based solutions. Journal of Hydrology. (2019), 568, 96–107. https://doi.org/10.1016/j.jhydrol.2018.10.059 Zhang, Y, Wei, H.B., (2012). Multi-attribute decision-making combination weighting method based on CRITIC. statistics and decision, (16):75-77. https://link.cnki.net/ doi/10.13546/j.cnki.tjyjc.2012.16.009 (in Chinese). Zhang, Y., (2023). Quantitative evaluation of the Carrying capacity of county water resources in the context of “four determinations with water”. China Rural Water and Hydropower. 60–68+73. https://doi.org/10.12396/znsd.220812. Zhou, F., Zhang, W., Jiang, A., Peng, H., Li, L., Deng, L., Sun, Y., Wang, H., (2023). Spatialtemporal variation characteristics and coupling coordination of the “water resources - water environment - water ecology” carrying capacity in the three gorges reservoir area. Ecological Indicators. 154 https://doi.org/10.1016/j.ecolind.2023.110874. Zhou, K., (2022). Comprehensive evaluation of water resources carrying capacity based on improved AGA-AHP method. Applied Water Science. 12 (5). https://doi.org/10.1007/ S13201-022-01626-2. Zuo, Q., Zhang, Z., Wu, B., 2020. Evaluation of water resources carrying capacity of nine provinces in Yellow River basin based on combined weight TOPSIS model. Water Resour. Prod. 36 (02), 1–7 in (Chinese). Zyoud, S.H., Kaufmann, L.G., Shaheen, H., Samhan, S., Fuchs-Hanusch, D., (2016). A framework for water loss management in developing countries under fuzzy environment: integration of fuzzy AHP with fuzzy TOPSIS. Expert Systems with Applications. 61, 86–105. https://doi.org/10.1016/j.eswa.2016.05.016. | ||
آمار تعداد مشاهده مقاله: 95 تعداد دریافت فایل اصل مقاله: 49 |