
تعداد نشریات | 162 |
تعداد شمارهها | 6,694 |
تعداد مقالات | 72,251 |
تعداد مشاهده مقاله | 129,281,454 |
تعداد دریافت فایل اصل مقاله | 102,141,196 |
اصلاح برخی از خصوصیات فیزیکی و شیمیایی خاکهای شنی کمبازده با استفاده از بنتونیت و نانوبنتونیت | ||
تحقیقات آب و خاک ایران | ||
دوره 56، شماره 1، فروردین 1404، صفحه 171-186 اصل مقاله (1.81 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2024.383003.669800 | ||
نویسندگان | ||
حدیث خسرویان چترودی1؛ علیرضا راهب* 1؛ احمد حیدری1؛ سارا طلایی خسروشاهی2؛ خدابخش گودرزوند چگینی2؛ مصطفی عبداله پور3؛ حمیدرضا مختاری اسفیدواجانی4 | ||
1گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
2گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران. | ||
3موسسه علوم زمین، بخش علوم خاک، دانشگاه لایبنیتس هانوفر، هانوفر، آلمان | ||
4گروه مدیریت دولتی، دانشکده مدیریت و اقتصاد، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران | ||
چکیده | ||
خشکسالی و بیابانزایی از چالشهای مهم محیطزیست و بخش کشاورزی در ایران و جهان هستند که به دلیل الگوی نامناسب مصرف آب تشدید شدهاند. با توجه به وسعت قابل توجه اراضی بیابانی کمبازده (43 میلیون هکتار) در ایران که عموما خاک با بافت سبک دارند، اصلاح این اراضی و مدیریت منابع آب آنها برای افزایش توان تولیدی خاک ضروری است. از این رو، هدف اصلی این مطالعه تعیین مقادیر بهینه بنتونیت و نانوبنتونیت بهعنوان اصلاحکنندههای طبیعی خاک و ارزیابی اثربخشی آنها در بهبود ویژگیهای فیزیکی و شیمیایی خاک شنی است. در این پژوهش، هر یک از سطوح بنتونیت شامل مقادیر 10، 20 و 30 تن در هکتار، بهطور ترکیبی با سطوح نانوبنتونیت شامل مقادیر 25/0، 75/0 و 5/2 تن در هکتار با خاک مخلوط و برای مدت سه ماه در دمای 25 درجه و 80 درصد ظرفیت مزرعه خوابانده شدند. پس از پایان دوره انکوباسیون، خصوصیات خاک شامل درصد رطوبت اشباع (SP)، جرم مخصوص ظاهری (BD)، بافت، هدایت الکتریکی عصاره اشباع (ECe)، pH و ظرفیت تبادل کاتیونی (CEC) اندازهگیری شدند. پژوهش با طرح آزمایشی کاملاً تصادفی شامل 10 تیمار در سه تکرار انجام و دادههای آزمایشی با نرمافزار Minitab 16 تحلیل شدند. نتایج نشان داد که تیمار بنتونیت در سطح 30 تن در هکتار و نانوبنتونیت در سطح 5/2 تن در هکتار تأثیرات مثبت و معنیداری بر خصوصیات فیزیکی و شیمیایی خاک داشت. تجزیه واریانس دادهها نشان داد تیمارهای بنتونیت و نانوبنتونیت تأثیر معنیداری بر CEC،ECe ، BD و SP خاک داشتند. خوشهبندی نتایج نیز نشان داد که تیمارهای 30 تن بنتونیت بهاضافه 75/0 تن نانوبنتونیت در هکتار؛ و 30 تن بنتونیت بهاضافه 5/2 تن نانوبنتونیت در هکتار بیشترین تاثیر را بر بهبود خصوصیات فیزیکی و شیمیایی مورد بررسی داشتند. با در نظر گرفتن نتایج دادههای آزمایشی، نتایج آماری و خوشهبندی تیمارهای آزمایشی، کاربرد 30 تن بنتونیت باضافه 5/2 تن نانوبنتونیت در هکتار به عنوان مناسبترین تیمار برای اصلاح خاکهای شنی در مناطق خشک و نیمه خشک انتخاب شد. این تیمار با بهبود ویژگیهای فیزیکی و شیمیایی خاک شنی، از جمله کاهش BD و افزایش SP و ارتقای CEC و کاهش ECe خاک بهطور مؤثری در اصلاح خاک شنی کمک کرد. | ||
کلیدواژهها | ||
رس و نانورس؛ سوپرجاذب؛ اصلاح خاک؛ توان تولید خاک | ||
عنوان مقاله [English] | ||
Modification of some physical and chemical properties of low productivity sandy soils using bentonite and nano-bentonite | ||
نویسندگان [English] | ||
Hadis Khosravian Chatroodi1؛ Alireza Raheb1؛ Ahmad Heidari1؛ Sara Talaee Khosrowshahi2؛ Khodabakhsh Goodarzvand Chegini2؛ Mostafa Abdollahpour3؛ Hamidreza Mokhtari Esfidvajani4 | ||
1Department of soil Science, Faculty of Agriculture, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran. | ||
2Department of soil Science, Faculty of Agriculture, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran. | ||
3Institute of Earth System Sciences, Section Soil Science, Leibniz University of Hannover, Hannover, Germany. | ||
4Public Administration Department, Faculty of Management and Economic, Islamic Azad University Science and Research Branch, Tehran, Iran | ||
چکیده [English] | ||
Drought and desertification are significant environmental and agricultural challenges in Iran and worldwide, which exacerbated by inefficient water consumption patterns. Given the considerable extent (43 million hectares) of low-yield desert lands in Iran, which generally have light-textured soils, it is essential to rehabilitate these lands and manage their water resources to enhance soil productivity. Therefore, the primary objective of this study is to determine the optimal amounts of bentonite and nano-bentonite as natural soil amendments and to evaluate their effectiveness in improving the physical and chemical properties of sandy soil. In this study, each level of bentonite, including rates of 10, 20, and 30 ton ha-1, was applied in combination with nano-bentonite levels of 0.25, 0.75, and 2.5 ton ha-1. These experimental treatments were mixed with the soil and incubated for three months at a temperature of 25°C and 80% field capacity. After the incubation period, soil properties, including saturation percentage (SP), bulk density (BD), texture, electrical conductivity of the saturated paste extract (ECe), Ph and cation exchange capacity (CEC), were measured. The experiment was conducted in a completely randomized design with 10 treatments in three replications for bentonite and nano-bentonite, and the experimental data were analyzed using Minitab 16 software. Results showed that the treatment with bentonite at 30 ton ha-1 and nano-bentonite at 2.5 ton ha-1 had significant positive effects on the measured physicochemical properties of the soil. Analysis of variance revealed that bentonite and nano-bentonite treatments had significant effects on soil CEC, ECe, BD, and SP. Clustering of the results further indicated that the treatments of 30 ton ha-1 of bentonite plus 0.75 ton ha-1 of nano-bentonite and 30 ton ha-1 of bentonite plus 2.5 ton ha-1 of nano-bentonite had the greatest impact on improving the physical and chemical properties studied. Considering the experimental data, statistical results, and clustering of the treatments, the application of 30 ton ha-1 of bentonite plus 2.5 ton ha-1 of nano-bentonite was selected as the most suitable treatment for amending sandy soils in arid and semi-arid regions. This treatment effectively contributed to improving the physical and chemical properties of sandy soil, including reducing BD, increasing SP, enhancing CEC and OC content, and lowering soil ECe. | ||
کلیدواژهها [English] | ||
Clay and nanoclay, Soil improvement, Soil productivity, Superabsorbent | ||
مراجع | ||
Abd El-Hady, M., & Ebtisam, I. (2016). Effect of different soil conditioners application on some soil characteristics and plant growth. II-Soil evaporation and drywet cycles. Int. J. ChemTech Res, 9, 45-49. Adams, R. M., Hurd, B. H., Lenhart, S., & Leary, N. (1998). Effects of global climate change on agriculture: an interpretative review. Climate research, 11(1), 19-30. Blake, G., & Hartge, K. (1986). Particle density. Methods of soil analysis: Part 1 physical and mineralogical methods, 5, 377-382. Bronick, C. J., & Lal, R. (2005). Soil structure and management: a review. Geoderma, 124(1-2), 3-22. Calabi Floody, M., Theng, B. K. G., Reyes, P., & Mora, M. L. (2009). Natural nanoclays: applications and future trends – a Chilean perspective. Clay Minerals, 44(2), 161-176. Carter, M. R., & Gregorich, E. G. (2007). Soil sampling and methods of analysis. CRC press. Czaban, J., Czyz, E., Siebielec, G., & Niedzwiecki, J. (2014). Long-lasting effects of bentonite on properties of a sandy soil deprived of the humus layer. International Agrophysics, 28(3). Czaban, J., & Siebielec, G. (2013). Effects of bentonite on sandy soil chemistry in a long-term plot experiment (II); effect on pH, CEC, and macro-and micronutrients. Polish Journal of Environmental Studies, 22(6). Czaban, J., Siebielec, G., Czyż, E., & Niedźwiecki, J. (2013). Effects of Bentonite Addition on Sandy Soil Chemistry in a Long-Term Plot Experiment (I); Effect on Organic Carbon and Total Nitrogen. Polish Journal of Environmental Studies, 22(6). Deng, H.-x., Gong, X.-l., & Wang, L.-h. (2006). Development of an adaptive tuned vibration absorber with magnetorheological elastomer. Smart materials and structures, 15(5), N111. Doan, C. D., Van de Walle, D., Dewettinck, K., & Patel, A. R. (2015). Evaluating the oil-gelling properties of natural waxes in rice bran oil: Rheological, thermal, and microstructural study. Journal of the American Oil Chemists' Society, 92, 801-811. El Nagar, A., Osorio, D., Zylinski, S., & Sait, S. M. (2021). Visual perception and camouflage response to 3D backgrounds and cast shadows in the European cuttlefish, Sepia officinalis. Journal of Experimental Biology, 224(11), jeb238717. Gholami, V., Chau, K. W., Fadaee, F., Torkaman, J., & Ghaffari, A. (2015). Modeling of groundwater level fluctuations using dendrochronology in alluvial aquifers. Journal of hydrology, 529, 1060-1069. Gill, S., Loprinzi, C. L., Sargent, D. J., Thomé, S. D., Alberts, S. R., Haller, D. G., Benedetti, J., Francini, G., Shepherd, L. E., & Francois Seitz, J. (2004). Pooled analysis of fluorouracil-based adjuvant therapy for stage II and III colon cancer: who benefits and by how much? Journal of clinical oncology, 22(10), 1797-1806. Guiwei, Q., De Varennes, A., & Cunha‐Queda, C. (2008). Remediation of a mine soil with insoluble polyacrylate polymers enhances soil quality and plant growth. Soil Use and Management, 24(4), 350-356. Hassan, A., & Mahmoud, A. W. M. (2013). The combined effect of bentonite and natural zeolite on sandy soil properties and productivity of some crops. Topclass Journal of Agricultural Research, 1(3), 22-28. Heidari, A., Kordpour Kermanshahi, A., & Raheb, A. (2024). The glacial origin of carbonates in the calcic and petrocalcic horizons of the soils developed on glacial deposits in the southern Alborz Mountain slope. Iranian Journal of Soil and Water Research, 54(12), 1963-1979. Hend, H., Somia, B., Mohamed, A., Saeda, A., & Eman, R. (2016). Dynamic removal of cumulative toxic heavy metals Pb (II) and Cd (II) from aqueous solutions via activated nano-sized bentonite adsorbents. Int. J. Contemp. Appl. Sci, 3, 67-82. Hussain, A. I., Anwar, F., Sherazi, S. T. H., & Przybylski, R. (2008). Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food chemistry, 108(3), 986-995. Hüttermann, S., & Memmert, D. (2018). Effects of lab-and field-based attentional training on athletes’ attention-window. Psychology of Sport and Exercise, 38, 17-27. Jafari Haghighi, M. (2003). Soil analysis methods: Sampling and important physical and chemical analyses. Sari: Nedaye Zoha Press. Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical transactions of the royal society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202. Kunze, G., & Dixon, J. (1986). Method of soil analysis, Part 1. Physical and mineralogical methods, American Society of Agronomy, Wisconsin, 568-577. Maracchi, G., Sirotenko, O., & Bindi, M. (2005). Impacts of present and future climate variability on agriculture and forestry in the temperate regions: Europe. Climatic change, 70(1), 117-135. Mi, J., Gregorich, E. G., Xu, S., McLaughlin, N. B., Ma, B., & Liu, J. (2017). Effect of bentonite amendment on soil hydraulic parameters and millet crop performance in a semi-arid region. Field Crops Research, 212, 107-114. Mojid, M., Wyseure, G., & Biswas, S. (2012). Requirement of nitrogen, phosphorus and potassium fertilizers for wheat cultivation under irrigation by municipal wastewater. Journal of soil science and plant nutrition, 12(4), 655-665. Narjary, B., Aggarwal, P., Singh, A., Chakraborty, D., & Singh, R. (2012). Water availability in different soils in relation to hydrogel application. Geoderma, 187, 94-101. P Olesen, K., Shehata, S., Bondok, A., M El Nahrawy, S., & El-Kerdany, A. (2016). Response of Egyptian clover to Nano Clay Flakes in Newly Reclaimed Sandy Soils under Sprinkler Irrigation System. Alexandria Science Exchange Journal, 37(October-December), 759-770. Padidar, M., Jalalian, A., Asgari, K., Abdouss, M., Najafi, P., Honarjoo, N., & Fallahzade, J. (2016). The impacts of nanoclay on sandy soil stability and atmospheric dust control. Agriculturae Conspectus Scientificus, 81(4), 193-196. Semalulu, O., Elobu, P., Namazzi, S., Kyebogola, S., & Mubiru, D. (2017). Higher cereal and legume yields using Ca-bentonite on sandy soils in the dry eastern Uganda: increased productivity versus profitability. J. Agric. Res, 5(2), 140-147. Semalulu, O., Magunda, M., & Mubiru, D. (2015). Amelioration of sandy soils in drought stricken areas through use of Ca-bentonite. Uganda Journal of Agricultural Sciences, 16(2), 195-205. Shao, W., & Terzopoulos, D. (2005). Autonomous pedestrians. Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, Shi, H., Quintero, F. J., Pardo, J. M., & Zhu, J.-K. (2002). The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. The plant cell, 14(2), 465-477. Smith, K., & Mullins, C. (1991). Soil analysis. Marcel Decker. Soda, M., Yasui, Y., Moyoshi, T., Sato, M., Igawa, N., & Kakurai, K. (2006). Magnetic structure of YBaCo4O7 with kagome and triangular lattices. Journal of the Physical Society of Japan, 75(5), 054707. Soukup, D. A., Buck, B. J., & Harris, W. (2008). Preparing soils for mineralogical analyses. Methods of Soil Analysis Part 5—Mineralogical Methods, 5, 13-31. Sumner, D. Y., & Grotzinger, J. P. (1996). Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration? Geology, 24(2), 119-122. Tahir, S., & Marschner, P. (2016). Clay amendment to sandy soil—effect of clay concentration and ped size on nutrient dynamics after residue addition. Journal of soils and sediments, 16, 2072-2080. Tállai, M. (2011). Effect of Bentonite and zeolite on characteristics and change of microbial activity of acidic humic sandy soil. Pol. J. Environ. Stud, 26, 1-8. Tayebee, R., & Mazruy, V. (2018). Acid-thermal activated nanobentonite as an economic industrial adsorbent for malachite green from aqueous solutions. Optimization, isotherm, and thermodynamic studies. Journal of Water and Environmental Nanotechnology, 3(1), 40-50. Tejada, M., Hernandez, M., & Garcia, C. (2009). Soil restoration using composted plant residues: Effects on soil properties. Soil and Tillage Research, 102(1), 109-117. Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418(6898), 671-677. Tu, H., Nelson, O., Bezprozvanny, A., Wang, Z., Lee, S.-F., Hao, Y.-H., Serneels, L., De Strooper, B., Yu, G., & Bezprozvanny, I. (2006). Presenilins form ER Ca2+ leak channels, a function disrupted by familial Alzheimer's disease-linked mutations. Cell, 126(5), 981-993. Wang, W., Wang, S., Ma, X., & Gong, J. (2011). Recent advances in catalytic hydrogenation of carbon dioxide. Chemical Society Reviews, 40(7), 3703-3727. Wilson, A. (2012). Preliminary test results of nano-based fluids reveal benefits for field application. Journal of Petroleum Technology, 64(11), 104-108. Whittig, L. D., & Allardice, W. R. (1986). X‐ray diffraction techniques. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 5, 331-362. | ||
آمار تعداد مشاهده مقاله: 56 تعداد دریافت فایل اصل مقاله: 51 |