
تعداد نشریات | 162 |
تعداد شمارهها | 6,692 |
تعداد مقالات | 72,229 |
تعداد مشاهده مقاله | 129,183,888 |
تعداد دریافت فایل اصل مقاله | 102,013,936 |
ارزیابی نقش باکتریهای محرک رشد گیاه در کنترل زیستی پاتوژن Salmonella typhimurium | ||
تحقیقات آب و خاک ایران | ||
دوره 56، شماره 1، فروردین 1404، صفحه 265-280 اصل مقاله (1.6 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2024.379505.669759 | ||
نویسندگان | ||
مطهره عابدین زاده1؛ نعیمه عنایتی ضمیر* 1؛ احسان شکری2؛ شهلا کیان امیری2 | ||
1گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران | ||
2بخش فناوری نانو، پژوهشگاه بیوتکنولوژی کشاورزی ایران، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران | ||
چکیده | ||
پاتوژنهای انسانی همچون سالمونلا از منابع متعددی وارد خاکهای کشاورزی میشوند. سالمونلا از رایجترین میکروارگانیسمهای منتقله از غذا می-باشد که عامل ایجاد عفونتهای مشترک بین انسان و حیوان است. در مطالعه حاضر از برخی باکتریهای محرک رشد گیاه به منظور کنترل پاتوژن Salmonella typhimurium استفاده شده است. نتایج نشان داد که به ترتیب 1) Bacillus rugosus CS5 ، 2)Bacillus vallismortis AS4 ، 3) Priestia aryabhattai CL1 و 4) Bacillus sp. SS4 بیشترین اثر بازدارندگی رشد سالمونلا را در محیط مایع داشتند؛ اما در محیط جامد باکتری-های 1) B. vallismortis AS4 ، 2) B. rugosus CS5 ، 3) P. aryabhattai CL1 و 4) Bacillus sp. SS4 بیشترین بازدارندگی رشد این پاتوژن در محیط جامد را نشان دادند. توانایی تولید سیدروفور، پروتئاز، لیپاز و سیانید هیدروژن توسط این 4 باکتری بررسی شد. هر چهار باکتری دارای توانایی تولید سیدروفور بودند. بیشترین شاخص تولید پروتئاز با مقادیر 9/2 و 5/2 متعلق به B. rugosus CS5 و P. aryabhattai CL1 بود. B. vallismortis AS4 دارای توانایی تولید لیپاز بود. P. aryabhattai strain CL1 و B. rugosus strain CS5 دارای توانایی تولید HCN با مقادیر 48/0 و 2/0 میلیگرم در لیتر بودند. تاثیر چهار باکتری به صورت جداگانه و کنسرسیوم میکروبی بر جمعیت سالمونلا در خاک بررسی شد. نتایج نشان داد جمعیت سالمونلا 15 روز پس از تلقیح به خاک تحت تاثیر تیمارها کاهش یافت. بیشترین کاهش جمعیت این پاتوژن مربوط به کنسرسیوم میکروبی و تیمار Bacillus sp. strain SS4 به ترتیب با 92 و 98 درصد کاهش جمعیت نسبت به شاهد بود. نتایج حاکی از تأثیر مثبت باکتریهای محرک رشدی در خاک به منظور کنترل پاتوژن S. typhimurium بود که میتواند علاوه بر کاهش اثرات منفی حضور پاتوژن در خاک، سلامت جامعه بشری و بهبود امنیت غذایی را در پی داشته باشد. | ||
کلیدواژهها | ||
پروتئاز؛ خاک؛ سالمونلا؛ سیانید هیدروژن؛ سیدروفور | ||
عنوان مقاله [English] | ||
Evaluating the role of plant growth-promoting bacteria in biological control of Salmonella typhimurium pathogen | ||
نویسندگان [English] | ||
Motahare Abedinzadeh1؛ naeimeh enayatizamir1؛ Ehsan Shokri2؛ shahla kianamiri2 | ||
1Department of Soil science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran. | ||
2Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran | ||
چکیده [English] | ||
Human pathogens such as Salmonella enter agricultural soils from various sources. Salmonella is one of the most common food-borne microorganisms and is a causative agent of infections shared between humans and animals. In the current study, some plant growth-promoting bacteria were used to control the pathogen Salmonella typhimurium. The results showed that, in order, 1) Bacillus rugosus CS5, 2) Bacillus vallismortis AS4, 3) Priestia aryabhattai CL1 and 4) Bacillus sp. SS4 had the highest inhibitory effect on the grrowth of Salmonella in liquid medium. However, in solid medium, the bacteria 1) B. vallismortis AS4, 2) B. rugosus CS5, 3) P. aryabhattai CL1 and 4) Bacillus sp. SS4 exhibited the greatest inhibition of this pathogen's growth. The ability to produce siderophores, proteases, lipases, and hydrogen cyanide was investigated in these four bacteria. All four bacteria were capable of producing siderophore. The highest protease production index, with values of 2.5 and 2.9, belonged to P. aryabhattai CL1 and B. rugosus CS5, respectively. B. vallismortis AS4 was capable of producing lipase. Both P. aryabhattai strain CL1 and B. rugosus strain CS5 had the ability to produce HCN, with values of 0.48 mg/mL and 0.2 mg/mL, respectively. The simple impact of four separate bacteria and a microbial consortium on the Salmonella population in soil was investigated. The results showed that the Salmonella population decreased 15 days after inoculation due to the treatments. The greatest reduction in the the population of this pathogen was related to the microbial consortium and the Bacillus sp. strain SS4 treatment, with a 92 % and 98 % reduction in population compared to the control, respectively. The findings indicate a positive effect of plant growth-promoting bacteria in soil for controlling S. typhimurium, which could reduce the negative impacts of the pathogen's presence in soil, thereby enhancing human health and food security. | ||
کلیدواژهها [English] | ||
hydrogen cyanide, protease, Salmonella, Siderophore, soil | ||
مراجع | ||
Abd El-Rahman, A. F., Shaheen, H. A., Abd El-Aziz, R. M., & Ibrahim, D. S. S. (2019). Influence of hydrogen cyanide-producing rhizobacteria in controlling the crown gall and root-knot nematode, Meloidogyne incognita. Egyptian Journal of Biological Pest Control, 29(1). https://doi.org/10.1186/s41938-019-0143-7 Adedeji, A. A., Häggblom, M. M., & Babalola, O. O. (2020). Sustainable agriculture in Africa: Plant growth-promoting rhizobacteria (PGPR) to the rescue. Scientific African, 9. https://doi.org/10.1016/j.sciaf.2020.e00492 Agbodjato, N. A., & Babalola, O. O. (2024). Promoting sustainable agriculture by exploiting plant growth-promoting rhizobacteria (PGPR) to improve maize and cowpea crops. PeerJ, 12(4), 1–34. https://doi.org/10.7717/peerj.16836 Andino, A., & Hanning, I. (2015). Salmonella enterica: Survival, colonization, and virulence differences among serovars. Scientific World Journal, 2015(Table 3). https://doi.org/10.1155/2015/520179 Arthurson, V., Sessitsch, A., & Jäderlund, L. (2011). Persistence and spread of Salmonella enterica serovar Weltevreden in soil and on spinach plants. FEMS Microbiology Letters, 314(1), 67–74. https://doi.org/10.1111/j.1574-6968.2010.02140.x Bahadur, I., Maurya, B. R., Meena, V. S., Saha, M., Kumar, A., & Aeron, A. (2017). Mineral Release Dynamics of Tricalcium Phosphate and Waste Muscovite by Mineral-Solubilizing Rhizobacteria Isolated from Indo-Gangetic Plain of India. Geomicrobiology Journal, 34(5), 454–466. https://doi.org/10.1080/01490451.2016.1219431 Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005 Bauer, M. A., Kainz, K., Carmona-Gutierrez, D., & Madeo, F. (2018). Microbial wars: Competition in ecological niches and within the microbiome. Microbial Cell, 5(5), 215–219. https://doi.org/10.15698/mic2018.05.628 Chahar, M., Gollop, R., Kroupitski, Y., Shemesh, M., & Sela Saldinger, S. (2023). Control of Salmonella in mung bean sprouts by antagonistic spore-forming Bacilli. Food Control, 143(July 2022). https://doi.org/10.1016/j.foodcont.2022.109276 Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71(9), 4951–4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005 Condò, C., Gómez, I., Farfán, M., & Rius, N. (2022). Assessing the inhibitory activity of culture supernatants against foodborne pathogens of two psychrotrophic bacteria isolated from river trout. Archives of Microbiology, 204(6), 1–8. https://doi.org/10.1007/s00203-022-02919-5 Dhawi, F. (2023). The Role of Plant Growth-Promoting Microorganisms (PGPMs) and Their Feasibility in Hydroponics and Vertical Farming. Metabolites, 13(2). https://doi.org/10.3390/metabo13020247 Eng, S. K., Pusparajah, P., Ab Mutalib, N. S., Ser, H. L., Chan, K. G., & Lee, L. H. (2015). Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Frontiers in Life Science, 8(3), 284–293. https://doi.org/10.1080/21553769.2015.1051243 Finn, S., Condell, O., McClure, P., Amézquita, A., & Fanning, S. (2013). Mechanisms of survival, responses, and sources of salmonella in low-moisture environments. Frontiers in Microbiology, 4(NOV), 1–15. https://doi.org/10.3389/fmicb.2013.00331 Fitriyanto, N. A., Hadi, S., Bahtiyar, M. I., Prasetyo, R. A., & Erwanto, Y. (2020). Characterization and growth profile of proteolytic strain PK-4 isolated from local slaughterhouse wastewater. BIO Web of Conferences, 28, 2–5. https://doi.org/10.1051/bioconf/20202803001 Ghodsalavi, B., Ahmadzadeh, M., Soleimani, M., Madloo, P. B., & Taghizad-Farid, R. (2013). Isolation and characterization of rhizobacteria and their effects on root extracts of Valeriana officinalis. Australian Journal of Crop Science, 7(3), 338–344. Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, H. S., & Patra, J. K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research, 206(October 2017), 131–140. https://doi.org/10.1016/j.micres.2017.08.016 Gowtham, H. G., Hariprasad, P., Nayak, S. C., & Niranjana, S. R. (2016). Application of rhizobacteria antagonistic to Fusarium oxysporum f. sp. lycopersici for the management of Fusarium wilt in tomato. Rhizosphere, 2, 72–74. https://doi.org/10.1016/j.rhisph.2016.07.008 Hashem, A., Tabassum, B., & Fathi Abd_Allah, E. (2019). Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences, 26(6), 1291–1297. https://doi.org/10.1016/j.sjbs.2019.05.004 Hogg, P.G. & Ahlgren, H.L. (1942). A rapid method for determining hydrocyanic acid content of single plants of Sudan grass. Agronomy Journal 34, 199-200. Jan, F., Arshad, H., Ahad, M., Jamal, A., & Smith, D. L. (2023). In vitro assessment of Bacillus subtilis FJ3 affirms its biocontrol and plant growth promoting potential. Frontiers in Plant Science, 14(July), 1–18. https://doi.org/10.3389/fpls.2023.1205894 Jechalke, S., Schierstaedt, J., Becker, M., Flemer, B., Grosch, R., Smalla, K., & Schikora, A. (2019). Salmonella establishment in agricultural soil and colonization of crop plants depend on soil type and plant species. Frontiers in Microbiology, 10(MAY), 1–17. https://doi.org/10.3389/fmicb.2019.00967 Jiao, X., Takishita, Y., Zhou, G., & Smith, D. L. (2021). Plant Associated Rhizobacteria for Biocontrol and Plant Growth Enhancement. Frontiers in Plant Science, 12(March). https://doi.org/10.3389/fpls.2021.634796 Johnson, N., Litt, P. K., Kniel, K. E., & Bais, H. (2020). Evasion of Plant Innate Defense Response by Salmonella on Lettuce. Frontiers in Microbiology, 11(April), 1–16. https://doi.org/10.3389/fmicb.2020.00500 Karmakar, K., Nath, U., Nataraja, K. N., & Chakravortty, D. (2018). Root mediated uptake of Salmonella is different from phyto-pathogen and associated with the colonization of edible organs. BMC Plant Biology, 18(1), 1–12. https://doi.org/10.1186/s12870-018-1578-9 Kumar, P., Thakur, S., Dhingra, G. K., Singh, A., Pal, M. K., Harshvardhan, K., Dubey, R. C., & Maheshwari, D. K. (2018). Inoculation of siderophore producing rhizobacteria and their consortium for growth enhancement of wheat plant. Biocatalysis and Agricultural Biotechnology, 15(June), 264–269. https://doi.org/10.1016/j.bcab.2018.06.019 Kumar, A., Singh, S., Gaurav, A.K., Srivastava, S. & Verma, J.P. (2020). Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants. Frontiers in microbiology, 11, p.1216. López, F. E., de las Mercedes Pescaretti, M., Morero, R., & Delgado, M. A. (2012). Salmonella Typhimurium general virulence factors: A battle of David against Goliath? Food Research International, 45(2), 842–851. https://doi.org/10.1016/j.foodres.2011.08.009 Lozano-Villegas, K. J., Herrera-Sánchez, M. P., Beltrán-Martínez, M. A., Cárdenas-Moscoso, S., & Rondón-Barragán, I. S. (2023). Molecular Detection of Virulence Factors in Salmonella serovars Isolated from Poultry and Human Samples. Veterinary Medicine International, 2023. https://doi.org/10.1155/2023/1875253 Luo, F., Chen, H., Wei, W., Liu, H., Chen, Y., & Li, S. (2024). Screening of Antagonistic Bacillus against Brown Rot in Dendrocalamus latiflorus and Preparation of Applying Bacterial Suspension. Plant Pathology Journal, 40(1), 1–15. https://doi.org/10.5423/PPJ.OA.07.2023.0107 Maelegheer, K., & Nulens, E. (2017). Same-day identification and antibiotic susceptibility testing on positive blood cultures: a simple and inexpensive procedure. European Journal of Clinical Microbiology and Infectious Diseases, 36(4), 681–687. https://doi.org/10.1007/s10096-016-2849-8 Menendez, E., Garcia-Fraile, P., & Rivas, R. (2015). Biotechnological applications of bacterial cellulases. AIMS Bioengineering, 2(3), 163–182. https://doi.org/10.3934/bioeng.2015.3.163 Method, A. R., Determining, F. O. R., Acid, H., Of, C., & Plants, S. (1942). Published February, 1942. 199–200. Miljaković, D., Marinković, J., & Balešević-Tubić, S. (2020). The significance of bacillus spp. In disease suppression and growth promotion of field and vegetable crops. Microorganisms, 8(7), 1–19. https://doi.org/10.3390/microorganisms8071037 Mishra, P., Mishra, J., Dwivedi, S. K., & Arora, N. K. (2020). Microbial Enzymes in Biocontrol of Phytopathogens. April, 259–285. https://doi.org/10.1007/978-981-15-1710-5_10 Nawaz, A., Shahbaz, M., Asadullah, M., Imran, A., Marghoob, M. U., Imtiaz, M., & Mubeen, F. (2020). Potential of Salt Tolerant PGPR in Growth and Yield Augmentation of Wheat (Triticum aestivum L.) Under Saline Conditions. Frontiers in Microbiology, 11(October), 1–12. https://doi.org/10.3389/fmicb.2020.02019 Paião, F. G., Arisitides, L. G. A., Murate, L. S., Vilas-Bôas, G. T., Vilas-Boas, L. A., & Shimokomaki, M. (2013). Detection of Salmonella spp, Salmonella Enteritidis and Typhimurium in naturally infected broiler chickens by a multiplex PCR-based assay. Brazilian Journal of Microbiology, 44(1), 37–41. https://doi.org/10.1590/S1517-83822013005000002 Pellegrini, M., Djebaili, R., Pagnani, G., Spera, D.M. & Del Gallo, M. (2023). Plant growth-promoting bacterial consortia render biological control of plant pathogens: a review. Sustainable Agrobiology: Design and Development of Microbial Consortia, pp.57-74. Peng, S., Song, D., Zhou, B., Hua, Q., Lin, X., & Wang, Y. (2022). Persistence of Salmonella Typhimurium and antibiotic resistance genes in different types of soil influenced by flooding and soil properties. Ecotoxicology and Environmental Safety, 248(October). https://doi.org/10.1016/j.ecoenv.2022.114330 Podnar, E., Erega, A., Danevčič, T., Kovačec, E., Lories, B., Steenackers, H., & Mandic-Mulec, I. (2022). Nutrient Availability and Biofilm Polysaccharide Shape the Bacillaene-Dependent Antagonism of Bacillus subtilis against Salmonella Typhimurium. Microbiology Spectrum, 10(6), 1–14. https://doi.org/10.1128/spectrum.01836-22 Pui, C. F., Wong, W. C., Chai, L. C., Lee, H. Y., Noorlis, A., Zainazor, T. C. T., Tang, J. Y. H., Ghazali, F. M., Cheah, Y. K., Nakaguchi, Y., Nishibuchi, M., & Radu, S. (2011). Multiplex PCR for the concurrent detection and differentiation of salmonella spp., Salmonella Typhi and salmonella Typhimurium. Tropical Medicine and Health, 39(1), 9–15. https://doi.org/10.2149/tmh.2010-20 Rahman, M., Alam, M. U., Luies, S. K., Kamal, A., Ferdous, S., Lin, A., Sharior, F., Khan, R., Rahman, Z., Parvez, S. M., Amin, N., Hasan, R., Tadesse, B. T., Taneja, N., Islam, M. A., & Ercumen, A. (2022). Contamination of fresh produce with antibiotic-resistant bacteria and associated risks to human health: A scoping review. International Journal of Environmental Research and Public Health, 19(1), 1–15. https://doi.org/10.3390/ijerph19010360 Rahman, M. T. (2015). Salmonellosis: A major foodborne disease of Global significance. Beverage and Food World, 42(12), 21–24. https://www.researchgate.net/publication/288827348 Santos, A. C. C., Malta, S. M., Dantas, R. C. C., Coelho Rocha, N. D., Ariston de Carvalho Azevedo, V., & Ueira-Vieira, C. (2022). Antimicrobial activity of supernatants produced by bacteria isolated from Brazilian stingless bee’s larval food. BMC Microbiology, 22(1), 1–9. https://doi.org/10.1186/s12866-022-02548-4 Santoyo, G., Urtis-Flores, C. A., Loeza-Lara, P. D., Orozco-Mosqueda, M. D. C., & Glick, B. R. (2021). Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (Pgpr). Biology, 10(6), 1–18. https://doi.org/10.3390/biology10060475 Sheng, M., Jia, H., Zhang, G., Zeng, L., Zhang, T., Long, Y., Lan, J., Hu, Z., Zeng, Z., Wang, B., & Liu, H. (2020). Siderophore Production by Rhizosphere Biological Control Bacteria Brevibacillus brevis GZDF3 of Pinellia ternata and Its Antifungal Effects on Candida albicans. Journal of Microbiology and Biotechnology, 30(5), 689–699. https://doi.org/10.4014/jmb.1910.10066 Timofeeva, A. M., Galyamova, M. R., & Sedykh, S. E. (2022). Bacterial Siderophores: Classification, Biosynthesis, Perspectives of Use in Agriculture. Plants, 11(22). https://doi.org/10.3390/plants11223065 Yanti, Y., Hamid, H., Reflin, Warnita, & Habazar, T. (2020). The ability of indigenous bacillus spp. Consortia to control the anthracnose disease (colletrotricum capsici) and increase the growth of chili plants. Biodiversitas, 21(1), 179–186. https://doi.org/10.13057/biodiv/d210123 Zhang, R., Li, Z., Gu, X., Zhao, J., Guo, T., & Kong, J. (2022). Probiotic Bacillus subtilis LF11 Protects Intestinal Epithelium Against Salmonella Infection. Frontiers in Cellular and Infection Microbiology, 12(February), 1–12. https://doi.org/10.3389/fcimb.2022.837886 Zhao, X., Silva, M. B. R. da, Van der Linden, I., Franco, B. D. G. M., & Uyttendaele, M. (2021). Behavior of the Biological Control Agent Bacillus thuringiensis subsp. aizawai ABTS-1857 and Salmonella enterica on Spinach Plants and Cut Leaves. Frontiers in Microbiology, 12(February), 1–14. https://doi.org/10.3389/fmicb.2021.626029. | ||
آمار تعداد مشاهده مقاله: 51 تعداد دریافت فایل اصل مقاله: 68 |