
تعداد نشریات | 162 |
تعداد شمارهها | 6,692 |
تعداد مقالات | 72,229 |
تعداد مشاهده مقاله | 129,184,003 |
تعداد دریافت فایل اصل مقاله | 102,014,109 |
Effect of Solanum Melongena Peel Extracts on Glucose Level and Biochemical Parameters in Alloxan-Diabetic Mice | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 13، دوره 19، شماره 2، تیر 2025، صفحه 317-332 اصل مقاله (2.44 M) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.19.2.1005611 | ||
نویسندگان | ||
Zena Ismail Abdullah؛ Nashwan Ibrahem Al-Lehebe* | ||
Department of Chemistry, College of Education for Pure Sciences, University of Mosul, Mosul, Iraq. | ||
چکیده | ||
Background: Natural compounds are safe and commonly used in medicine. Diabetes is a chronic metabolic disease that is widely spread in the world. Natural products can decrease blood sugar levels. This effect controls the pancreas and metabolic pathways. Objectives: The aim of this research is to extract effective compounds from eggplant peels and study their effects on blood glucose levels, lipid profiles, kidney function, and liver enzymes in diabetic mice. Methods: In this study, crude extract and some natural products such as oils, polyphenols, and anthocyanins were isolated. These extracts were identified by gas chromatography (GC) and high-performance liquid chromatography (HPLC). Some parameters were measured, such as glucose, urea, creatinine, triglyceride (TG), high- and low-density lipoprotein cholesterol (LDL-c), very low-density lipoprotein cholesterol (VLDL-c), alanine transaminase, aspartate aminotransferase (AST), lipase, and atherogenic index in male diabetic mice. Results: The results showed the presence of many fatty acids, polyphenols, and anthocyanin compounds in eggplant peels. A significant effect on lipid profiles, glucose, creatinine, and lipase was found after ten days of treatment in diabetic mice with the aforementioned extracts. In contrast, a nonsignificant effect was noted in HDL-c and urea levels with oil and polyphenol extracts. Nevertheless, these extracts had no effect on AST and ALT levels. Conclusion: In this study, the effects of these extracts were found to be mixed. However, they demonstrated beneficial effects on blood glucose, creatinine levels, and lipid profiles. These extracts may help reduce the severity of diabetes or its complications. No clear effect was observed in liver function tests. | ||
کلیدواژهها | ||
Anthocyanin؛ Atherogenic index؛ diabetes mellitus؛ Fatty acids؛ Polyphenol | ||
اصل مقاله | ||
Introduction
Polyphenol compounds may possess important antioxidant properties and anti-inflammatory actions, among other benefits (Urquiaga & Leighton, 2000). Quercetin and gallic acid were present in higher concentrations than the other polyphenols.
After ten days of treatment with the extracts, the effects of eggplant peel extracts on the lipid profile were investigated, as shown in Table 4. The best effects on VLDL-c, TG, and T-cho levels were observed with treatment using anthocyanin, while LDL-c was significantly decreased with treatment using the alcoholic extract. Additionally, HDL-c levels were improved with the oil extract.
Acknowledgments
Adebawo, O., Salau, B., Ezima, E., Oyefuga, O., Ajani, E., & Idowu, G., et al. (2006). Fruits and vegetables moderate lipid cardiovascular risk factor in hypertensive patients. Lipids in Health and Disease, 5, [DOI:10.1186/1476-511X-5-14] [PMID] Al-lehebe, N. I., Hameed, H. N., & Al-sadoon, M. B. (2022). Evaluation of the effect of Castanea sativa extracts on lipoxygenase activity. Plant Science Today, 9(4), 963-969. [DOI:10.14719/pst.1853] Alabbas, K., Salih, O., & Al-Abbasy, O. (2022). Isolation, purification, and characterization of pecan nut lipase and studying its affinity towards pomegranate extracts and 1, 4-Diacetoxybenzene. Iraqi Journal of Science, 63(3), 908-922. [DOI:10.24996/ijs.2022.63.3.1] Anderson, J. W., O’Neal, D. S., Riddell-Mason, S., Floore, T. L., Dillon, D. W., & Oeltgen, P. R. (1995). Postprandial serum glucose, insulin, and lipoprotein responses to high-and low-fiber diets. Metabolism, 44(7), 848-854. [DOI:10.1016/0026-0495(95)90236-8] [PMID] Anjum, A., Qureshi, H., Tabassum, S., Anwar, W., Shakil, R., & Anwar, M., et al. (2021). Comparative effects of cane sugar, Honey & Jaggery on plasma glucose level & body weight of alloxan induced diabetic rats. Proceedings S.Z.M.C, 35(3), 44-49. [DOI:10.47489/PSZMC-807-35-3-44-49] Bairaktari, E., Hatzidimou, K., Tzallas, C., Vini, M., Katsaraki, A., & Tselepis, A., et al. (2000). Estimation of LDL cholesterol based on the Friedewald formula and on apo B levels. Clinical Biochemistry, 33(7), 549-555. [DOI:10.1016/S0009-9120(00)00162-4] [PMID] Cao, G., Sofic, E., & Prior, R. L. (1996). Antioxidant capacity of tea and common vegetables. Journal of Agricultural and Food Chemistry, 44(11), 3426-3431. [DOI:10.1021/jf9602535] Cory, H., Passarelli, S., Szeto, J., Tamez, M., & Mattei, J. (2018). The role of polyphenols in human health and food systems: A mini-review. Frontiers in Nutrition, 5,[DOI:10.3389/fnut.2018.00087][PMID] Dias, T. R., Alves, M. G., Casal, S., Oliveira, P. F., & Silva, B. M. (2017). Promising potential of dietary (poly) phenolic compounds in the prevention and treatment of diabetes mellitus. Current Medicinal Chemistry, 24(4), 334-354. [DOI:10.2174/0929867323666160905150419] [PMID] Fajarwati, I., Solihin, D. D., Wresdiyati, T., & Batubara, I. (2023). Administration of alloxan and streptozotocin in Sprague Dawley rats and the challenges in producing diabetes model. Paper presented at: The Second International Conference of Advanced Veterinary Science and Technologies for Sustainable Development, 17-18 September 2023 Online.[DOI:10.1088/1755-1315/1174/1/012035] Faselis, C., Katsimardou, A., Imprialos, K., Deligkaris, P., Kallistratos, M., & Dimitriadis, K. (2020). Microvascular complications of type 2 diabetes mell Current Vascular Pharmacology, 18(2), 117-124. [DOI:10.2174/1570161117666190502103733] [PMID] Lee, S., Lee, J., Ahn, S., Baek, S. Y., & Kim, B. (2019). Determination of fatty acid contents in infant formula by isotope dilution-gas chromatography/mass Journal of Food Composition and Analysis, 80, 33-39. [DOI:10.1016/j.jfca.2019.04.002] Lim, S. M., Lee, H. S., Jung, J. I., Kim, S. M., Kim, N. Y., & Seo, T. S., et al. (2019). Cyanidin-3-O-galactoside-enriched Aronia melanocarpa extract attenuates weight gain and adipogenic pathways in high-fat diet-induced obese C57BL/6 mice. Nutrients, 11(5), 1190. [DOI:10.3390/nu11051190][PMID] Marchetti, P., Baronti, W., Boggi, U., & Marselli, L. (2023). Diabetes Mellitus: Classification and diagnosis. In R.W.G. Gruessner& A.C. Gruessner (Eds.), Transplantation of the pancreas (pp. 3-12). Cham: Springer. [DOI:10.1007/978-3-031-20999-4_1] Marhuenda-Muñoz, M., Laveriano-Santos, E. P., Tresserra-Rimbau, A., Lamuela-Raventós, R. M., Martínez-Huélamo, M., & Vallverdú-Queralt, A. (2019). Microbial phenolic metabolites: which molecules actually have an effect on human health? Nutrients, 11(11), 2725. [DOI:10.3390/nu11112725][PMID] Mead, J. R., Irvine, S. A., & Ramji, D. P. (2002). Lipoprotein lipase: Structure, function, regulation, and role in disease. Journal of Molecular Medicine, 80(12), 753–769. [DOI:10.1007/s00109-002-0384-9] [PMID] Modak, M., Dixit, P., Londhe, J., Ghaskadbi, S., & Devasagayam, T. P. A. (2007). Indian herbs and herbal drugs used for the treatment of diabetes. Journal of Clinical Biochemistry and Nutrition, 40(3), 163-173. [DOI:10.3164/jcbn.40.163][PMID] Naikoo, M. I., Dar, M. I., Raghib, F., Jaleel, H., Ahmad, B., & Raina, A., et al. (2019). Role and regulation of plants phenolics in abiotic stress tolerance: An overview. In M. I. R. Khan, P. S. Reddy & N. A. Khan (Eds.), Plant signaling molecules: Role and regulation under stressful environments (pp. 157-168). Sawston: Woodhead Publishing. [DOI:10.1016/B978-0-12-816451-8.00009-5] Naz, R., Saqib, F., Awadallah, S., Wahid, M., Latif, M. F., & Iqbal, I., et al. (2023). Food polyphenols and type II diabetes mellitus: Pharmacology and mecha Molecules (Basel, Switzerland), 28(10), 3996. [DOI:10.3390/molecules28103996][PMID] Neff, M. M., & Chory, J. (1998). Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development. Plant Physiology, 118(1), 27-35. [DOI:10.1104/pp.118.1.27][PMID] Nguyen, A. T. M., Akhter, R., Garde, S., Scott, C., Twigg, S. M., & Colagiuri, S., et al. (2020). The association of periodontal disease with the complications of diabetes mellitus. A systematic review. Diabetes Research and Clinical Practice, 165,[DOI:10.1016/j.diabres.2020.108244][PMID] Niemi, J., Mäkinen, V. P., Heikkonen, J., Tenkanen, L., Hiltunen, Y., & Hannuksela, M. L., et al. (2009). Estimation of VLDL, IDL, LDL, HDL2, apoA-I, and apoB from the Friedewald inputs-apoB and IDL, but not LDL, are associated with mortality in type 1 diabetes. Annals of Medicine, 41(6), 451-461. [DOI:10.1080/07853890902893392] [PMID] Nikkilä, E. A., & Hormila, P. (1978). Serum lipids and lipoproteins in insulin-treated diabetes: demonstration of increased high density lipoprotein concentrations. Diabetes, 27(11), 1078-1086. [DOI:10.2337/diab.27.11.1078] [PMID] Noda, Y., Kneyuki, T., Igarashi, K., Mori, A., & Packer, L. (2000). Antioxidant activity of nasunin, an anthocyanin in Eggplant peels. Toxicology, 148(2-3), 119-123. [DOI:10.1016/S0300-483X(00)00202-X] [PMID] Oak, M. H., Bedoui, J. E., Madeira, S. V., Chalupsky, K., & Schini-Kerth, V. B. (2006). Delphinidin and cyanidin inhibit PDGFAB‐induced VEGF release in vascular smooth muscle cells by preventing activation of p38 MAPK and JNK. British Journal of Pharmacology, 149(3), 283–290. [DOI:10.1038/sj.bjp.0706843][PMID] Radovanović, B., Mladenović, J., Radovanović, A., Pavlović, R., & Nikolić, V. (2015). Phenolic composition, antioxidant, antimicrobial and cytotoxic activites of Allium porrum L.(Serbia) extracts. Journal of Food and Nutrition Research, 3(9), 564-569. [Link] Rashan, A. I., Altaee, R. T., Salh, F. S., Al-Abbasy, O. Y., & Al-Lehebe, N. (2023). The role of polyamines in plants: A review. Plant Science Today, 10(sp2), 164-171. [DOI:10.14719/pst.2520] Rayasam, G. V., Tulasi, V. K., Davis, J. A., & Bansal, V. S. (2007). Fatty acid receptors as new therapeutic targets for diabetes. Expert Opinion on Therapeutic Targets, 11(5), 661-671. [DOI:10.1517/14728222.11.5.661] [PMID] Różańska, D., & Regulska-Ilow, B. (2018). The significance of anthocyanins in the prevention and treatment of type 2 diabetes. Advances in Clinical and Experimental Medicine: Official Organ Wroclaw Medical University, 27(1), 135–142. [DOI:10.17219/acem/64983] [PMID] Saito, T., Nishida, M., Saito, M., Tanabe, A., Eitsuka, T., & Yuan, S. H., et al. (2016). The fruit of Acanthopanax senticosus ( et Maxim.) Harms improves insulin resistance and hepatic lipid accumulation by modulation of liver adenosine monophosphate-activated protein kinase activity and lipogenic gene expression in high-fat diet-fed obese mice. Nutrition Research, 36(10), 1090-1097. [DOI:10.1016/j.nutres.2016.09.004] [PMID] Sajid, M., Khan, M. R., Ismail, H., Latif, S., Rahim, A. A., Mehboob, R., & Shah, S. A. (2020). Antidiabetic and antioxidant potential of Alnus nitida leaves in alloxan induced diabetic rats. Journal of Ethnopharmacology, 251, [DOI:10.1016/j.jep.2020.112544] [PMID] Sharma, S., Choudhary, M., Bhardwaj, S., Choudhary, N., & Rana, A. C. (2014). Hypoglycemic potential of alcoholic root extract of Cassia occidentalis Linn. in streptozotocin induced diabetes in albino mice. Bulletin of Faculty of Pharmacy, Cairo University, 52(2), 211-217. [DOI:10.1016/j.bfopcu.2014.09.003] Shim, Y. S., Kim, S., Seo, D., Park, H. J., & Ha, J. (2014). Rapid method for determination of anthocyanin glucosides and free delphinidin in grapes using u-HPLC. Journal of Chromatographic Science, 52(7), 629-635. [DOI:10.1093/chromsci/bmt091] [PMID] (2010). Shimadzu Instrument with Model. Sivamaruthi, B. S., Kesika, P., Subasankari, K., & Chaiyasut, C. (2018). Beneficial effects of anthocyanins against diabetes mellitus associated consequences-A mini review. Asian Pacific Journal of Tropical Biomedicine, 8(10), 471-477. [DOI:10.4103/2221-16244137] Solikhah, T. I., Wijaya, T. A., Pavita, D. A., Nur Asdiyanta, A., & Hamonangan, J. M. (2022). Histopathological pancreas analysis of hylocereus polyrhizus peel ethanolic extract on alloxan induced diabetic mice. Journal of Drug Delivery and Therapeutics, 12(5), 149-152. [DOI:10.22270/jddt.v12i5.5607] Sridhar, A., Ponnuchamy, M., Kumar, P. S., Kapoor, A., Vo, D. N., & Prabhakar, S. (2021). Techniques and modeling of polyphenol extraction from food: A review. Environmental Chemistry Letters, 19(4), 3409–3443. [DOI:10.1007/s10311-021-01217-8][PMID] Stinkens, R., Goossens, G. H., Jocken, J. W., & Blaak, E. E. (2015). Targeting fatty acid metabolism to improve glucose metabolism. Obesity Reviews, 16(9), 715-757. [DOI:10.1111/obr.12298] [PMID] Tibbetts, S. M., Milley, J. E., & Lall, S. P. (2015). Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. Journal of Applied Phycology, 27, 1109-1119. [DOI:10.1007/s10811-014-0428-x] Urquiaga, , & Leighton, F. (2000). Plant polyphenol antioxidants and oxidative stress. Biological Research, 33(2), 55-64. [DOI:10.4067/S0716-97602000000200004] [PMID] | ||
مراجع | ||
Adebawo, O., Salau, B., Ezima, E., Oyefuga, O., Ajani, E., & Idowu, G., et al. (2006). Fruits and vegetables moderate lipid cardiovascular risk factor in hypertensive patients. Lipids in Health and Disease, 5, [DOI:10.1186/1476-511X-5-14] [PMID]
Al-lehebe, N. I., Hameed, H. N., & Al-sadoon, M. B. (2022). Evaluation of the effect of Castanea sativa extracts on lipoxygenase activity. Plant Science Today, 9(4), 963-969. [DOI:10.14719/pst.1853]
Alabbas, K., Salih, O., & Al-Abbasy, O. (2022). Isolation, purification, and characterization of pecan nut lipase and studying its affinity towards pomegranate extracts and 1, 4-Diacetoxybenzene. Iraqi Journal of Science, 63(3), 908-922. [DOI:10.24996/ijs.2022.63.3.1]
Anderson, J. W., O’Neal, D. S., Riddell-Mason, S., Floore, T. L., Dillon, D. W., & Oeltgen, P. R. (1995). Postprandial serum glucose, insulin, and lipoprotein responses to high-and low-fiber diets. Metabolism, 44(7), 848-854. [DOI:10.1016/0026-0495(95)90236-8] [PMID]
Anjum, A., Qureshi, H., Tabassum, S., Anwar, W., Shakil, R., & Anwar, M., et al. (2021). Comparative effects of cane sugar, Honey & Jaggery on plasma glucose level & body weight of alloxan induced diabetic rats. Proceedings S.Z.M.C, 35(3), 44-49. [DOI:10.47489/PSZMC-807-35-3-44-49]
Bairaktari, E., Hatzidimou, K., Tzallas, C., Vini, M., Katsaraki, A., & Tselepis, A., et al. (2000). Estimation of LDL cholesterol based on the Friedewald formula and on apo B levels. Clinical Biochemistry, 33(7), 549-555. [DOI:10.1016/S0009-9120(00)00162-4] [PMID]
Cao, G., Sofic, E., & Prior, R. L. (1996). Antioxidant capacity of tea and common vegetables. Journal of Agricultural and Food Chemistry, 44(11), 3426-3431. [DOI:10.1021/jf9602535]
Cory, H., Passarelli, S., Szeto, J., Tamez, M., & Mattei, J. (2018). The role of polyphenols in human health and food systems: A mini-review. Frontiers in Nutrition, 5,[DOI:10.3389/fnut.2018.00087][PMID]
Dias, T. R., Alves, M. G., Casal, S., Oliveira, P. F., & Silva, B. M. (2017). Promising potential of dietary (poly) phenolic compounds in the prevention and treatment of diabetes mellitus. Current Medicinal Chemistry, 24(4), 334-354. [DOI:10.2174/0929867323666160905150419] [PMID]
Fajarwati, I., Solihin, D. D., Wresdiyati, T., & Batubara, I. (2023). Administration of alloxan and streptozotocin in Sprague Dawley rats and the challenges in producing diabetes model. Paper presented at: The Second International Conference of Advanced Veterinary Science and Technologies for Sustainable Development, 17-18 September 2023 Online.[DOI:10.1088/1755-1315/1174/1/012035]
Faselis, C., Katsimardou, A., Imprialos, K., Deligkaris, P., Kallistratos, M., & Dimitriadis, K. (2020). Microvascular complications of type 2 diabetes mell Current Vascular Pharmacology, 18(2), 117-124. [DOI:10.2174/1570161117666190502103733] [PMID]
Lee, S., Lee, J., Ahn, S., Baek, S. Y., & Kim, B. (2019). Determination of fatty acid contents in infant formula by isotope dilution-gas chromatography/mass Journal of Food Composition and Analysis, 80, 33-39. [DOI:10.1016/j.jfca.2019.04.002]
Lim, S. M., Lee, H. S., Jung, J. I., Kim, S. M., Kim, N. Y., & Seo, T. S., et al. (2019). Cyanidin-3-O-galactoside-enriched Aronia melanocarpa extract attenuates weight gain and adipogenic pathways in high-fat diet-induced obese C57BL/6 mice. Nutrients, 11(5), 1190. [DOI:10.3390/nu11051190][PMID]
Marchetti, P., Baronti, W., Boggi, U., & Marselli, L. (2023). Diabetes Mellitus: Classification and diagnosis. In R.W.G. Gruessner& A.C. Gruessner (Eds.), Transplantation of the pancreas (pp. 3-12). Cham: Springer. [DOI:10.1007/978-3-031-20999-4_1]
Marhuenda-Muñoz, M., Laveriano-Santos, E. P., Tresserra-Rimbau, A., Lamuela-Raventós, R. M., Martínez-Huélamo, M., & Vallverdú-Queralt, A. (2019). Microbial phenolic metabolites: which molecules actually have an effect on human health? Nutrients, 11(11), 2725. [DOI:10.3390/nu11112725][PMID]
Mead, J. R., Irvine, S. A., & Ramji, D. P. (2002). Lipoprotein lipase: Structure, function, regulation, and role in disease. Journal of Molecular Medicine, 80(12), 753–769. [DOI:10.1007/s00109-002-0384-9] [PMID]
Modak, M., Dixit, P., Londhe, J., Ghaskadbi, S., & Devasagayam, T. P. A. (2007). Indian herbs and herbal drugs used for the treatment of diabetes. Journal of Clinical Biochemistry and Nutrition, 40(3), 163-173. [DOI:10.3164/jcbn.40.163][PMID]
Naikoo, M. I., Dar, M. I., Raghib, F., Jaleel, H., Ahmad, B., & Raina, A., et al. (2019). Role and regulation of plants phenolics in abiotic stress tolerance: An overview. In M. I. R. Khan, P. S. Reddy & N. A. Khan (Eds.), Plant signaling molecules: Role and regulation under stressful environments (pp. 157-168). Sawston: Woodhead Publishing. [DOI:10.1016/B978-0-12-816451-8.00009-5]
Naz, R., Saqib, F., Awadallah, S., Wahid, M., Latif, M. F., & Iqbal, I., et al. (2023). Food polyphenols and type II diabetes mellitus: Pharmacology and mecha Molecules (Basel, Switzerland), 28(10), 3996. [DOI:10.3390/molecules28103996][PMID]
Neff, M. M., & Chory, J. (1998). Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development. Plant Physiology, 118(1), 27-35. [DOI:10.1104/pp.118.1.27][PMID]
Nguyen, A. T. M., Akhter, R., Garde, S., Scott, C., Twigg, S. M., & Colagiuri, S., et al. (2020). The association of periodontal disease with the complications of diabetes mellitus. A systematic review. Diabetes Research and Clinical Practice, 165,[DOI:10.1016/j.diabres.2020.108244][PMID]
Niemi, J., Mäkinen, V. P., Heikkonen, J., Tenkanen, L., Hiltunen, Y., & Hannuksela, M. L., et al. (2009). Estimation of VLDL, IDL, LDL, HDL2, apoA-I, and apoB from the Friedewald inputs-apoB and IDL, but not LDL, are associated with mortality in type 1 diabetes. Annals of Medicine, 41(6), 451-461. [DOI:10.1080/07853890902893392] [PMID]
Nikkilä, E. A., & Hormila, P. (1978). Serum lipids and lipoproteins in insulin-treated diabetes: demonstration of increased high density lipoprotein concentrations. Diabetes, 27(11), 1078-1086. [DOI:10.2337/diab.27.11.1078] [PMID]
Noda, Y., Kneyuki, T., Igarashi, K., Mori, A., & Packer, L. (2000). Antioxidant activity of nasunin, an anthocyanin in Eggplant peels. Toxicology, 148(2-3), 119-123. [DOI:10.1016/S0300-483X(00)00202-X] [PMID]
Oak, M. H., Bedoui, J. E., Madeira, S. V., Chalupsky, K., & Schini-Kerth, V. B. (2006). Delphinidin and cyanidin inhibit PDGFAB‐induced VEGF release in vascular smooth muscle cells by preventing activation of p38 MAPK and JNK. British Journal of Pharmacology, 149(3), 283–290. [DOI:10.1038/sj.bjp.0706843][PMID]
Radovanović, B., Mladenović, J., Radovanović, A., Pavlović, R., & Nikolić, V. (2015). Phenolic composition, antioxidant, antimicrobial and cytotoxic activites of Allium porrum L.(Serbia) extracts. Journal of Food and Nutrition Research, 3(9), 564-569. [Link]
Rashan, A. I., Altaee, R. T., Salh, F. S., Al-Abbasy, O. Y., & Al-Lehebe, N. (2023). The role of polyamines in plants: A review. Plant Science Today, 10(sp2), 164-171. [DOI:10.14719/pst.2520]
Rayasam, G. V., Tulasi, V. K., Davis, J. A., & Bansal, V. S. (2007). Fatty acid receptors as new therapeutic targets for diabetes. Expert Opinion on Therapeutic Targets, 11(5), 661-671. [DOI:10.1517/14728222.11.5.661] [PMID]
Różańska, D., & Regulska-Ilow, B. (2018). The significance of anthocyanins in the prevention and treatment of type 2 diabetes. Advances in Clinical and Experimental Medicine: Official Organ Wroclaw Medical University, 27(1), 135–142. [DOI:10.17219/acem/64983] [PMID]
Saito, T., Nishida, M., Saito, M., Tanabe, A., Eitsuka, T., & Yuan, S. H., et al. (2016). The fruit of Acanthopanax senticosus ( et Maxim.) Harms improves insulin resistance and hepatic lipid accumulation by modulation of liver adenosine monophosphate-activated protein kinase activity and lipogenic gene expression in high-fat diet-fed obese mice. Nutrition Research, 36(10), 1090-1097. [DOI:10.1016/j.nutres.2016.09.004] [PMID]
Sajid, M., Khan, M. R., Ismail, H., Latif, S., Rahim, A. A., Mehboob, R., & Shah, S. A. (2020). Antidiabetic and antioxidant potential of Alnus nitida leaves in alloxan induced diabetic rats. Journal of Ethnopharmacology, 251, [DOI:10.1016/j.jep.2020.112544] [PMID]
Sharma, S., Choudhary, M., Bhardwaj, S., Choudhary, N., & Rana, A. C. (2014). Hypoglycemic potential of alcoholic root extract of Cassia occidentalis Linn. in streptozotocin induced diabetes in albino mice. Bulletin of Faculty of Pharmacy, Cairo University, 52(2), 211-217. [DOI:10.1016/j.bfopcu.2014.09.003]
Shim, Y. S., Kim, S., Seo, D., Park, H. J., & Ha, J. (2014). Rapid method for determination of anthocyanin glucosides and free delphinidin in grapes using u-HPLC. Journal of Chromatographic Science, 52(7), 629-635. [DOI:10.1093/chromsci/bmt091] [PMID]
(2010). Shimadzu Instrument with Model.
Sivamaruthi, B. S., Kesika, P., Subasankari, K., & Chaiyasut, C. (2018). Beneficial effects of anthocyanins against diabetes mellitus associated consequences-A mini review. Asian Pacific Journal of Tropical Biomedicine, 8(10), 471-477. [DOI:10.4103/2221-16244137]
Solikhah, T. I., Wijaya, T. A., Pavita, D. A., Nur Asdiyanta, A., & Hamonangan, J. M. (2022). Histopathological pancreas analysis of hylocereus polyrhizus peel ethanolic extract on alloxan induced diabetic mice. Journal of Drug Delivery and Therapeutics, 12(5), 149-152. [DOI:10.22270/jddt.v12i5.5607]
Sridhar, A., Ponnuchamy, M., Kumar, P. S., Kapoor, A., Vo, D. N., & Prabhakar, S. (2021). Techniques and modeling of polyphenol extraction from food: A review. Environmental Chemistry Letters, 19(4), 3409–3443. [DOI:10.1007/s10311-021-01217-8][PMID]
Stinkens, R., Goossens, G. H., Jocken, J. W., & Blaak, E. E. (2015). Targeting fatty acid metabolism to improve glucose metabolism. Obesity Reviews, 16(9), 715-757. [DOI:10.1111/obr.12298] [PMID]
Tibbetts, S. M., Milley, J. E., & Lall, S. P. (2015). Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. Journal of Applied Phycology, 27, 1109-1119. [DOI:10.1007/s10811-014-0428-x]
Urquiaga, , & Leighton, F. (2000). Plant polyphenol antioxidants and oxidative stress. Biological Research, 33(2), 55-64. [DOI:10.4067/S0716-97602000000200004] [PMID] | ||
آمار تعداد مشاهده مقاله: 62 تعداد دریافت فایل اصل مقاله: 61 |