
تعداد نشریات | 163 |
تعداد شمارهها | 6,761 |
تعداد مقالات | 72,822 |
تعداد مشاهده مقاله | 131,621,557 |
تعداد دریافت فایل اصل مقاله | 103,409,448 |
ارزیابی توزیع افقی و عمودی فسفر در خاک زراعی اطراف ریشه گیاه ذرت به شیوه کودآبیاری در سیستم قطرهای تیپ | ||
تحقیقات آب و خاک ایران | ||
دوره 56، شماره 3، خرداد 1404، صفحه 571-588 اصل مقاله (1.92 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2025.385191.669832 | ||
نویسندگان | ||
میثم رضائی* 1؛ سمیه دهقانی2؛ کامبیز بازرگان1؛ کریم شهبازی1 | ||
1مؤسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران | ||
2- بخش تحقیقات شوری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان بوشهر. سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران | ||
چکیده | ||
فراهمی و استفاده کارآمدتر از فسفر به عنوان یکی از عناصر پرمصرف خاک در تولیدات زراعی، با استفاده از سیستم کودآبیاری مستلزم تعیین دقیق مقدار کاربرد و درک حرکت و توزیع فسفر در خاک اطراف گیاه میباشد. پژوهش حاضر به منظور دستیابی به اهداف ارزیابی توزیع فسفر محلول (SSP) و قابل استفاده (SAP) در خاک زراعی (آهکی) تحت کشت گیاه ذرت و خاک بدون گیاه، در دو دوره کودآبیاری در طول زمانهای مختلف، در مزرعه موسسه تحقیقات خاک و آب (کرج) انجام شد. پس از آمادهسازی زمین، کشت ذرت بهصورت نواری و تک ردیفه با فواصل ردیفها و گیاهان از یکدیگر به ترتیب 60 و 15 سانتیمتر انجام شد. پس از تزریق کودآبیاری کود فسفره در هر دو دوره، نمونهبردرای از خاک بدون گیاه ذرت و خاک تحت کشت ذرت در فواصل 5 و 10 سانتیمتر از محل تزریق به طور افقی و در هر فاصله از عمقهای 5 - 0، 10 - 5، 15 - 10، 20 – 15 ، 30- 20 و 40 -30 سانتیمتر با اوگر در در فواصل زمانی 4، 24، 98 و 960 ساعت با دو تکرار گیاه (دو بوته گیاه) انجام شد. سپس نمونهها به منظور تجزیه شیمیایی به آزمایشگاه منتقل و برخی ویژگیهای فیزیکی و شیمیایی نمونههای خاک (سه تکرار آزمایشگاهی) با روشهای معمول اندازهگیری شدند. نتایج نشان داد: کودآبیاری، عمق و زمان بر توزیعSSP و SAP به طور منظم و نامنظم تاثیرگذار میباشد. نتایج تجزیه واریانس نشان داد اثر ساده تیمار دوره کودآبیاری بر SSP و SAP تحت کشت ذرت در فاصله 5 و 10 سانتیمتر از محل تزریق کود، تأثیر معنیداری (در سطوح آمـاری یـک درصد) داشت که حاکی از حرکت حدود 10 سانتیمتری فسفر در این سیستم بود. با افزایش عمق، مقادیر میانگینSSP و SAP روند کاهشی را نشان داد. حداکثر میانگین غلظت در همه تیمارها در زمان 98 ساعت پس از تزریق کود مشاهده شد که نشان دهنده محدوه زمانی مناسب در فراهمی آسان فسفر میباشد. به طور کلی به دلیل خواص منحصر به فرد فسفر در خاک مانند حلالیت کم، تحرک کم و تثبیت زیاد توسط ماتریکس خاک و در دسترس بودن فسفر برای گیاهان، بهتر است کودهای فسفری به صورت محلول و در فاصله حدود 5 سانتیمتر گیاه زراعی و در تقسیطهای بیشتری تزریق شود. | ||
کلیدواژهها | ||
فسفر محلول؛ فسفر قابل استفاده؛ گیاه ذرت؛ کود-آبیاری و آبیاری قطرهای | ||
عنوان مقاله [English] | ||
Assessing the horizontal and vertical distribution of phosphorus in agricultural soil around maize root using a fertigation method in surface drip irrigation | ||
نویسندگان [English] | ||
Meisam Rezaei1؛ somayeh dehghani2؛ KAMBIZ BAZARGAN1؛ KARIM SHAHBAZI1 | ||
1Soil and Water Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran | ||
2Salinity Research Department, Bushehr Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Tehran,, Iran | ||
چکیده [English] | ||
The availability and efficient utilization of phosphorus, an essential nutrient in agricultural production, through fertigation systems requires precise determination of application rates and an understanding of phosphorus movement and distribution in the soil layers surrounding crops. This study aimed to evaluate the distribution of soluble phosphorus (SSP) and available phosphorus (SAP) in agricultural soil under maize cultivation and in bare soil during two fertigation cycles over various time periods at the Soil and Water Research Institute (Karaj). After tillage, maize was planted using a strip and single-row method, with row and plant spacings of 60 cm and 15 cm, respectively. Following fertigation in both cycles, using micro auger soil samples were collected from both bare soil and soil under maize at horizontal distances of 5 and 10 cm from the dripper and at depths of 0-5, 5-10, 10-15, 15-20, 20-30, and 30-40 cm at time intervals of 4, 24, 98, and 960 hours, with two plant replications (two sides of each plants). The samples were subsequently transferred to the laboratory for chemical analysis using conventional measurement methods. The results indicated that fertigation, depth, and time significantly affected the distribution of SSP and SAP in both systematic and non-systematic manners. The analysis of variance revealed that the effect of the fertigation cycle treatment on SSP and SAP under maize cultivation at 5 and 10 cm from the fertilizer injection site was significant (at the 1% statistical level), demonstrating a phosphorus movement of approximately 10 cm within this system. As the depth increased, the average SSP and SAP values exhibited a decreasing trend. The maximum average concentration across all treatments was observed 98 hours after fertilizer injection, indicating an optimal time range for easily accessible phosphorus availability. Overall, due to the unique properties of phosphorus in soil—such as low solubility, low mobility, and high stabilization/fixation by the soil matrix—along with its availability for plants, it is preferable to apply phosphorus fertilizers in a soluble form, approximately 5 centimeters away from the crop, and in more frequent applications. | ||
کلیدواژهها [English] | ||
Soluble phosphorus, Available phosphorus, Maize, Fertigation, and Drip irrigation | ||
مراجع | ||
Badr, M. A., Abou Hussein, S. D., El-Tohamy, W. A., & Gruda, N. (2010). Nutrient uptake and yield of tomato under various methods of fertilizer application and levels of fertigation in arid lands. Gesunde Pflanzen, 62(1), 11-19. Ben-Gal, A., & Dudley, L. M. (2003). Phosphorus availability under continuous point source irrigation. Soil Science Society of America Journal, 67(5), 1449-1456. Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy journal, 54(5), 464-465. Campos, H., Cooper, M., Habben, J. E., Edmeades, G. O., & Schussler, J. R. (2004). Improving drought tolerance in maize: a view from industry. Field crops research, 90(1), 19-34. Chen, Q., Qu, Z., Ma, G., Wang, W., Dai, J., Zhang, M., ... & Liu, Z. (2022). Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions. Agricultural Water Management, 263, 107447. Cheng, S., Ke, G., Li, Z., Cheng, Y., & Wu, H. (2021). Soil Available Phosphorus Investigated for Spatial Distribution and Effect Indicators Resulting from Ecological Construction on the Loess Plateau, China. Sustainability, 13(22), 12572. Chtouki, M., Naciri, R., & Oukarroum, A. (2024). A review on phosphorus drip fertigation in the Mediterranean region: Fundamentals, current situation, challenges, and perspectives. Heliyon. Chtouki, M., Naciri, R., Garré, S., Nguyen, F., Zeroual, Y., & Oukarroum, A. (2022). Phosphorus fertilizer form and application frequency affect soil P availability, chickpea yield, and P use efficiency under drip fertigation. Journal of Plant Nutrition and Soil Science, 185(5), 603-611. Çimrin, K. M. (2020). Relationship between some soil characteristics and contribution on available phosphorus of inorganic phosphorus fractions in calcareous soils. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 25(2), 138-144. Cui, Z., Zhang, H., Chen, X., Zhang, C., Ma, W., Huang, C., & Dou, Z. (2018). Pursuing sustainable productivity with millions of smallholder farmers. Nature, 555(7696), 363-366. Famiglietti, J. S., Rudnicki, J. W., & Rodell, M. (1998). Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas. Journal of hydrology, 210(1-4), 259-281. Gao, X., Zhao, X., Wu, P., Yang, M., Ye, M., Tian, L., ... & Siddique, K. H. (2021). The economic–environmental trade-off of growing apple trees in the drylands of China: A conceptual framework for sustainable intensification. Journal of Cleaner Production, 296, 126497. Gheibi, M., Tehrani, M. M., & Asadi, F. (2014). Guidelines for Integrated Management of Soil Fertility and Corn Nutrition: Technical Promotional Instructions. Soil and Water Research Institute. 56 pp. In Persian. Guo, Y., Wang, Z., & Li, J. (2023). Coupling effects of phosphate fertilizer type and drip fertigation strategy on soil nutrient distribution, maize yield and nutrient uptake. Agricultural Water Management, 290, 108602. Islami, M., Hamidi, N., Abadi Khah, D., & Heydari Salehabad, M. (2018). Challenges of Vertical Movement of Phosphorus (Phosphate Fertilizer) in Soil. In: Proceedings of the Second National Conference on Pistachio in Iran, Vali-e-Asr University of Rafsanjan, 101-102. In Persian. Keshavarz, P., & Moshiri, F. (2023). Management of phosphorus fertigation in calcareous soils. Publication No. 633. Technical Promotional Instructions. Soil and Water Research Institute. 29 pp. In Persian. Khan, A., Tan, D. K. Y., Munsif, F., Afridi, M. Z., Shah, F., Wei, F., ... & Zhou, R. (2017). Nitrogen nutrition in cotton and control strategies for greenhouse gas emissions: a review. Environmental Science and Pollution Research, 24, 23471-23487. Li, J., Xu, X., Lin, G., Wang, Y., Liu, Y., Zhang, M., ... & Zhang, Y. (2018). Micro-irrigation improves grain yield and resource use efficiency by co-locating the roots and N-fertilizer distribution of winter wheat in the North China Plain. Science of the total environment, 643, 367-377. Li, Y., Liu, X., Fang, H., Shi, L., Yue, X., & Yang, Q. (2021). Exploring the coupling mode of irrigation method and fertilization rate for improving growth and water-fertilizer use efficiency of young mango tree. Scientia Horticulturae, 286, 110211. Marschner, H. (1995). Mineral nutrition of higher plants 2nd edn. Institute of Plant Nutrition University of Hohenheim: Germany. McLean, E. O. 1988. Soil pH and lime requirement. In: Page, A. L. (Ed.), Methods of Soil Analysis. Part, American Society of Agronomy, Soil Science Society of America, Madison, Wis., Pp. 199-224. Neumann, G., & Römheld, V. (2002). Root-induced changes in the availability of nutrients in the rhizosphere.In Y Waisel, A Eshel, U Kafkafi, eds, Plant Roots, The Hidden Half, Ed 3. Marcel Dekker, Inc., New York, pp.617–649. Owens, P. N., Deeks, L. K., Wood, G. A., Betson, M. J., Lord, E. I., & Davison, P. S. (2008). Variations in the depth distribution of phosphorus in soil profiles and implications for model-based catchment-scale predictions of phosphorus delivery to surface waters. Journal of Hydrology, 350(3-4), 317-328. Qu, Z., Chen, Q., Yin, S., Feng, H., Liu, Y., & Li, C. (2024). Effects of drip irrigation coupled with controlled release potassium fertilizer on maize growth and soil properties. Agricultural Water Management, 301, 108948. Rafiee, H., Zarabi, M., & Mahdavi, S. (2022). Investigating phosphorus distribution and availability in the presence of organic matter and elemental sulfur along with thiobacillus bacteria in two soils with different textures. Iranian Journal of Water and Soil Research, 53 (1), 2625-2641. In Persian. Richardson, A. E., Barea, J. M., McNeill, A. M., & Prigent-Combaret, C. (2009). Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Shalmany, M. A., Saghafi, N. A., & Khorasani, A. (2003). Utilization of phosphorus-32 radioisotope to investigate the distribution of phosphate fertilizer in soil and different parts of tomato plants under drip fertilizer irrigation system. Iranian Journal of Agricultural Sciences, 34 (4), 935-947. In Persian. Sharma, K., Sharma, J. C., Sharma, S., Sharma, N., Sharma, R., Ananthakrishnan, S., & Abd_Allah, E. F. (2024). Optimizing leaf nutrient status, growth, and yield parameters in high-density apple orchards (cv. Super chief) via integrated drip irrigation and fertigation techniques. Heliyon, 10(16). Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X. & Zhang, F. (2011). Phosphorus dynamics: from soil to plant. Plant physiology, 156(3), 997-1005.Tao, R., Wakelin, S. A., Liang, Y., Hu, B., & Chu, G. (2018). Nitrous oxide emission and denitrifier communities in drip-irrigated calcareous soil as affected by chemical and organic fertilizers. Science of the Total Environment, 612, 739-749. Shi, Y., Chen, M., Wang, X., Yang, H., Yu, H., & Hao, X. (2023). Efficiency analysis and evaluation of centrifugal variable-rate fertilizer spreading based on real-time spectral information on rice. Computers and Electronics in Agriculture, 204, 107505. Shirazi, M. A., & Boersma, L. (1984). A unifying quantitative analysis of soil texture. Soil Science Society of America Journal, 48(1), 142-147. Srivastav, A. L., Patel, N., Rani, L., Kumar, P., Dutt, I., Maddodi, B. S., & Chaudhary, V. K. (2024). Sustainable options for fertilizer management in agriculture to prevent water contamination: a review. Environment, Development and Sustainability, 26(4), 8303-8327. Tariq, M., Rozina, G., Fazal, M., Fazal, J., Zahid, H., Nadia, N., Hamayoon, K. & Hayatullah, K. (2011). Effect of different phosphorus levels on the yield and yield components of maize. Sarhad Journal Agriculture, 27, 165-170. Teramage, M. T., Asfaw, M., Demissie, A., Feyissa, A., Ababu, T., Gonfa, Y., & Sime, G. (2023). Effects of land use types on the depth distribution of selected soil properties in two contrasting agro-climatic zones. Heliyon, 9(6). Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418(6898), 671-677.van der Putten, W. H., Bardgett, R. D., Farfan, M., Montanarella, L., Six, J., & Wall, D. H. (2023). Soil biodiversity needs policy without borders. Science, 379(6627), 32-34. Wang, Z., Li, J., Hao, F., & Li, Y. (2017). Effects of phosphorus fertigation and lateral depths on distribution of Olsen-P in soil and yield of maize under subsurface drip irrigation. In 2017 ASABE Annual International Meeting (p. 1). American Society of Agricultural and Biological Engineers. Zhang, F., Shen, J., Zhang, J., Zuo, Y., Li, L., & Chen, X. (2010). Rhizosphere processes and management for improving nutrient use efficiency and crop productivity: implications for China. Advances in agronomy, 107, 1-32. Zhang, W., Lu, J. S., Bai, J., Khan, A., Liu, S. T., Zhao, L., ... & Xiong, Y. C. (2024). Introduction of soybean into maize field reduces N2O emission intensity via optimizing nitrogen source utilization. Journal of Cleaner Production, 442, 141052. Zong, R., Wang, Z., Zhang, J., & Li, W. (2021). The response of photosynthetic capacity and yield of cotton to various mulching practices under drip irrigation in Northwest China. Agricultural Water Management, 249, 106814. | ||
آمار تعداد مشاهده مقاله: 81 تعداد دریافت فایل اصل مقاله: 123 |