
تعداد نشریات | 163 |
تعداد شمارهها | 6,761 |
تعداد مقالات | 72,821 |
تعداد مشاهده مقاله | 131,603,856 |
تعداد دریافت فایل اصل مقاله | 103,399,630 |
بررسی پاسخ ریشه ذرت به ترکیبات یونی مختلف با استفاده از توابع کاهش کلان | ||
تحقیقات آب و خاک ایران | ||
دوره 56، شماره 3، خرداد 1404، صفحه 685-700 اصل مقاله (1.85 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2025.384928.669833 | ||
نویسندگان | ||
ابوذر بذرافشان1؛ محمدحسین محمدی* 1؛ مهدی شرفا1؛ علی اصغر ذوالفقاری2 | ||
1گروه علوم و مهندسی خاک، دانشکده مهندسی و فناوری کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
2گروه بیابانزدایی، دانشکده کویرشناسی، دانشگاه سمنان، سمنان، ایران | ||
چکیده | ||
این تحقیق به منظور بررسی تنش شوری ترکیبات یونی کلرورسدیم+کلرورکلسیم و کلرورکلسیم بر وزن ریشه ذرت انجام شد. دو آزمایش گلخانهای به طور موازی مربوط به هر ترکیب یونی در قالب طرح کاملا تصادفی با 4 تکرار انجام شد. سطوح شوری مختلف (0، 61، 126، 252 و 336 کیلوپاسکال) به صورت مشابه در هر دو ترکیب یونی اعمال شدند. بعد از شروع تیمارهای شوری، پتانسیل اسمزی گلدانها ثابت نگه داشته شد. پاسخ ریشه ذرت با استفاده از پارامترهای شوری پتانسیل اسمزی، غلظت یون و قابلیت هدایت الکتریکی محلول خاک بررسی شد و سپس توسط مدلهای خطی ماس-هافمن و غیرخطی ونگنوختن-هافمن ارزیابی شدند. تنش شوری به طور معنیدار وزن ریشه را در هر دو ترکیب یونی تحت تاثیر قرار داد. نتایج تحقیق نشان داد که پاسخ وزن ریشه ذرت به تنش شوری توسط پارامتر پتانسیل اسمزی بهتر از غلظت یون و قابلیت هدایت الکتریکی شرح داده میشود. بر اساس پتانسیل اسمزی مقدار حد آستانه شوری ترکیب یونی کلرورسدیم+کلرورکلسیم و ترکیب یونی کلرورکلسیم به ترتیب صفر و 49/2 کیلوپاسکال به دست آمد، که نشاندهنده تاثیر نوع یون بر حساسیت ریشه ذرت به تنش شوری میباشد. مقادیر وزن ریشه برآورد شده با استفاده از توابع کاهش نشان داد که دقت مدل نمایی ونگنوختن-هافمن در هر دو ترکیب یونی کلرورسدیم+کلرورکلسیم (71/4 (nRMSE = و کلرورکلسیم (69/5nRMSE = ) بالاتر از مدل خطی ماس-هافمن میباشد. همچنین کارایی برآورد مدل نمایی با 991/0 EF= بالاتر از مدل خطی با 98/0 EF=بود. | ||
کلیدواژهها | ||
پتانسیل اسمزی؛ تنش شوری؛ قابلیت هدایت الکتریکی؛ غلظت یون | ||
عنوان مقاله [English] | ||
Investigation of maize root response to different ionic composition using macroscopic reduction functions | ||
نویسندگان [English] | ||
Abouzar Bazrafshan1؛ Mohammad Hosein Mohammadi1؛ Mahdi Shorafa1؛ Ali Asghar Zolfaghari2 | ||
1Department of Soil Science, Faculty of Agricultural Engineering and Technology, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran | ||
2Desertification Department, Faculty of Desert Science, University of Semnan, Semnan, Iran | ||
چکیده [English] | ||
In this study, our aim is to investigate the effect of salinity stress of NaCl+CaCl2 and CaCl2 ionic compositions in maize (Zea Mays L.) root mass. Two parallel greenhouse experiments were conducted in pots in a randomized complete design with 4 replicates. The different salinity levels (0, 61, 126, 252 and 336 kPa) were similarly applied in both ionic compositions. The osmotic potential in pots was kept constant after the treatment initiation. The maize root response was investigated using osmotic potential, ion concentration and electrical conductivity salinity parameters and then were evaluated by linear Maas-Hoffman and non-linear van Genuchten-Hoffman models. The imposed salinity stress significantly affected root mass in both NaCl+CaCl2 and CaCl2 ionic compositions. The results of this study revealed that osmotic potential is a more appropriate parameter than ion concentration and electrical conductivity for maize root response to salinity stress. Based on osmotic potential, the salinity threshold values of NaCl+CaCl2 and CaCl2 ionic compositions were obtained 0 kPa and 2.49 kPa, respectively which implies effect of ion type on sensivity of maize root mass to salinity stress. The estimated root mass values using reduction functions indicated that exponential model of van Genuchten-Hoffman in both NaCl+CaCl2 (nRMSE=4.71) and CaCl2 (nRMSE=5.69) ionic compositions had more accuracy than linear model of Maas-Hoffman. In addition, modeling efficiency of exponential model (EF=0.991) was larger than linear model (EF=0.98). | ||
کلیدواژهها [English] | ||
electrical conductivity, ion concentration, osmotic potential, salinity stress | ||
مراجع | ||
Albasha, R., Mailhol, J. C., & Cheviron, B. (2015). Compensatory uptake functions in empirical macroscopic root water uptake models-experimental and numerical analysis. Agricultural Water Management, 155, 22–29. Bazrafshan, A., Shorafa, M., Mohammadi, M. H., Zolfaghari, A. A., van der Zee, S., & van de Craats, D. (2020). Comparison of the individual salinity and water deficit stress using water use, yield, and plant parameters in maize. Environmental Monitoring and Assessment, 192:448. Bazrafshan, A., Shorafa, M., Mohammadi, M. H., & Zolfaghari, A. A. (2019). Maize Response to Salinity Stress using water uptake models in different seasons. Iranian Journal of Soil and Waters Sciences, 50, 2171-2182. (In Persian). Ben-Gal, A., Borochov-Neori, H., Yermiyahu, U., & Shani, U. (2009). Is osmotic potential a more appropriate property than electrical conductivity for evaluating whole-plant response to salinity? Environmental and Experimental Botany, 65, 232–237. Bernstein, L. (1975). Effects of salinity and sodicity on plant growth. Annual Review Phytopathology, 13, 295–312. Chaves, M.M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103, 551–560. Cramer, G. R. (2002). Sodium–calcium interactions under salinity stress. In: Läuchli, A., Luttge, U. (Eds.), Salinity: Environment, Plants, Molecules. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 205–227. De Jong van Lier, Q., Van Dam, J. C., & Metselaar, K. (2009). Root water extraction under combined water and osmotic stress. Soil Science Society of America Journal, 73, 862-875. De Willigen, P., van Dam, J. C., Javaux, M., & Heinen, M. (2012). Root water uptake as simulated by three soil water flow models. Vadose Zone Journal, 11, 811–822. Gardner,W. R. (1960). Dynamic aspects of water availability to plants. Soil Science. 89: 60-73. Homaee, M., Feddes, R. A., & Dirksen, C. (2002). A macroscopic water extraction model for non-uniform transient salinity and water stress. Soil Science Society of America Journal, 66, 1764–1772. Himabindu, Y., Chakradhar, T., Reddy, M. C., Kanygin, A., Redding, K. E., & Chandrasekhar, T. (2016). Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes. Environmental and Experimental Botany, 124, 39–63. Jalali, V., & Kapourchal, S. A. (2020). Assessing four different macroscopic water uptake models for maize plant (Zea mays L.) under salinity stress. Irrigation and Drainage, 70, 70–83. Kirkham, M. B. (2014). Principles of soil and plant water relations. Cambridge: Academic Press. Maathuis, F. J. M. (2014). Sodium in plants: perception, signalling, and regulation of sodium fluxes. Journal of Experimental Botany, 65, 849–858. Maiti, A, & Rogers, R. D. (2011). A correlation-based predictor for pair-association in ionic liquids. Physical Chemistry Chemical Physics, 13, 12138-12145. Meskini-Vishkaee, F., Mohammadi, M. H., & Neyshabouri, M. R. (2018). Revisiting the wet and dry ends of soil integral water capacity using soil and plant properties. Soil Research, 56, 331-345. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. Oster, J. D., Letey, J., Vaughan, P., Wu, L., & Qadir, M. (2012). Comparison of transient state models that include salinity and matric stress effects on plant yield. Agricultural Water Management, 103, 167–175. Rengasamy, P. (2010). Osmotic and ionic effects of various electrolytes on the growth of wheat. Australian Journal of Soil Research, 48, 120–124. Rhoades, J. D. (1996). Salinity: electrical conductivity and total dissolved solid.P. 417-435. In: sparks, D. L., Helmke, P. A., Leoppet, R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T. & Summer, M. E. (Eds), Methods of soil analysis. Part 3. Chemical Methods Soil Science Society American Inc. Book series, No. 5, Madison, WI, USDA. Saadat, S., & Homaee, M. (2015). Modeling sorghum response to irrigation water salinity at early growth stage. Agricultural Water Management, 152, 119-124. Sarai Tabrizi, M., Babazadeh, H., Homaee, M., Kaveh, F., & Parsinejad, M. (2016). Determining the threshold value of basil yield reduction and evaluation of water uptake models under salinity stress condition. Journal of Water and soil science. 30(1), 30-40. (In Persian) Seifi, S., Alizadeh, A., Davari, K., & Banayan aval, M. (2015). Evaluation of water uptake functions under simultaneous salinity and water stress conditions in turf grass. Iranian Journal of Irrigation and Drainage, 9(1), 131-142. (In Persian) Shannon, M. C., & Grieve, C. M. (1999). Tolerance of vegetable crops to salinity. Scientia Horticulturae, 78, 5–38. Shrivastava, P., & Kumar, R. (2015). Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22, 123–131. Skaggs, T. H., van Genuchten, M. T., Shouse, P. J., & Poss J. A. (2006). Macroscopic approaches to root water uptake as a function of water and salinity stress. Agricultural Water Management, 86, 140–149. Soil Survey Staff. (2014). Soil taxonomy, 12th ed. Washington DC: USDANRCS, Washington DC, USA. Tavakkoli, E., Fatehi, F., Coventry, S., Rengasamy, P., & Mcdonald, G. K. (2011). Additive effects of Na+ and Cl– ions on barley growth under salinity stress. Journal of Experimental Botany, 62, 2189–2203. Vennam, R. R., Bheemanahalli, R., Reddy, K. R., Dhillon, J., Zhang, X., & Adeli, A. (2024). Early-season maize responses to salt stress: Morpho-physiological, leaf reflectance, and mineral composition. Journal of Agriculture and Food Research, 15, 100994. Wang, H., Liang, L. Y., Liu, S., An, T. T., Fang, Y., Xu, B. C., Zhang, S. Q., Deng, X. P., Palta, J. A., Siddique, K. H. M., & Chen, Y. L. (2020). Maize genotypes with deep root systems tolerate salt stress better than those with shallow root systems during early growth. Journal of Agronomy and Crop Science, 206, 711–721. Wang, T., Xu, Y., Zuo, Q., Shi, J., Wu, X., Liu, L., Sheng, J., Jiang, P., & Ben-Gal, A. (2023). Evaluating and improving soil water and salinity stress response functions for root water uptake. Agricultural Water Management, 287, 108451. Wu, X., Shi, J., Zuo, Q., Zhang, M., & Ben-Gal, A. (2021). Parameterization of the water stress reduction function based on soil-plant water relations. Irrigation Science, 39, 101–122. Yang, H, Du, T. S, Mao, X. M, & Shukla, M. K. (2020). Modeling tomato evapotranspiration and yield responses to salinity using different macroscopic reduction functions. Vadose Zone Journal, 10, 1-15. Zaidi, P. H., Shahid, M., Seetharam, K., & Vinayan, M. T. (2022). Genomic regions associated with salinity stress tolerance in tropical maize (Zea Mays L.). Frontiers in Plant Sciences, 13, 869270 Zhang, X., Yang, H., Shukla, M. K., & Du, T. (2023). Proposing a crop-water-salt production function based on plant response to stem water potential. Agricultural Water Management, 178, 108162 Zhao, K. F., Song, J., Fan, H., Zhou, S., & Zhao, M. (2010). Growth response to ionic and osmotic stress of NaCl in salt-tolerant and salt-sensitive maize. Journal of Integrative Plant Biology, 52, 468–475 | ||
آمار تعداد مشاهده مقاله: 46 تعداد دریافت فایل اصل مقاله: 47 |