
تعداد نشریات | 163 |
تعداد شمارهها | 6,760 |
تعداد مقالات | 72,813 |
تعداد مشاهده مقاله | 131,598,421 |
تعداد دریافت فایل اصل مقاله | 103,396,673 |
اعتبارسنجی کوپل نرم افزارهای Ansys Fluent و Rocky با بررسی اثر پارامترهای عملکردی غربال استوانه ای دوار بر تمیزی دانه های برنج | ||
مهندسی بیوسیستم ایران | ||
دوره 56، شماره 1، فروردین 1404، صفحه 1-16 اصل مقاله (2.09 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijbse.2025.388956.665584 | ||
نویسندگان | ||
کامران صفری حسین آبادی1؛ مهرنوش جعفری* 1؛ مهدی نادری نژاد2؛ یاسمین توکلی1 | ||
1گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ایران | ||
2گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه فردوسی مشهد، خراسان رضوی، ایران. | ||
چکیده | ||
غربال استوانهای دوار در مقایسه با سایر سیستمهای تمیز کننده استفاده شده در کمباینها، دارای ویژگیهایی همچون ساختار سادهتر، وزن سبکتر، لرزش و مصرف انرژی کمتر است. این نوع غربال همراه با جریان هوا میتواند به عنوان سیستم تمیز کننده جایگزین برای مخلوط برنج کوبیده شده، استفاده شود. در این پژوهش، برای تحلیل بهتر پارامترهای کاری غربال استوانهای بر عملکرد جداسازی دانه از کاه، از کوپل دینامیک سیالات محاسباتیCFD) ) و روش المان گسستهDEM) ) استفاده شد. تاثیر سرعت جریان هوا و سرعت دورانی غربال بر شاخصهای جداسازی شامل نسبت تمیزی، نسبت تلفات و بازده جداسازی بررسی شد. نتایج نشان داد که سرعت جریان هوا تاثیر قابل توجهی بر سرعت متوسط محوری اجزای مخلوط دارد. سرعت چرخش غربال تاثیر معنیداری بر نسبت تلفات و بازده جداسازی دارد. در این مطالعه به منظور شبیه سازی جریان گسسته مواد دانهای، از نرم افزار Rocky DEM به عنوان جایگزین نرم افزار EDEM استفاده شد. نتایج پژوهش حاضر به کمک مطالعات گذشته که از نرم افزار EDEM برای شبیهسازی بهره برده بودند، صحتسنجی و تایید گردید. نرم افزار Rocky DEM توسط شرکت توسعه دهنده ANSYS Fluent ارائه شده، از این رو در شبیهسازی تعامل ذرات گسسته و جریان سیال به روش کوپل CFD-DEM میتواند جایگزین نرم افزارهایی مانند EDEM که پیشتر به طور گسترده در حوزه کشاورزی استفاده شده، گردد. | ||
کلیدواژهها | ||
دینامیک سیالات محاسباتی؛ روش المان گسسته؛ غربال استوانهای؛ سیستمهای تمیزکننده | ||
عنوان مقاله [English] | ||
Validation of Ansys Fluent and Rocky Software by Investigating the Effect of Rotating Cylindrical Sieve Performance Parameters on Rice Grain Cleanliness | ||
نویسندگان [English] | ||
Kamran Safari Hosseinabadi1؛ Mehrnoosh Jafari1؛ Mahdi Naderinezhad2؛ Yasamin Tavakoli1 | ||
1Department of Biosystems Engineering, Faculty of Agriculture, Isfahan University of Technology, Isfahan, Iran | ||
2Department of Mechanical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Razavi Khorasan, Iran | ||
چکیده [English] | ||
A cylindrical sieve, characterized by its simple structure, lightweight, negligible vibration, and lower energy consumption compared to other separation systems used in combines. This type of screen can serve as an alternative cleaning system for rice-threshed mixture when combined with air flow. This research employed computational fluid dynamics (CFD) and the discrete element method (DEM) to explore and enhance the understanding of the operational parameters influencing the performance of the cleaning sieve. The study examined the impact of air flow velocity and the rotational speed of the sieve on various separation indices, such as the cleanliness ratio, loss ratio, and efficiency. Findings indicated that air flow velocity significantly influences the average axial speed of the mixture components. The rotational speed of the sieve has a significant effect on both the loss ratio and the sieve's efficiency. In this study, Rocky DEM software was utilized as an alternative to EDEM for simulating the discrete flow of granular materials. The results of this study were validated through comparisons with earlier research that utilized EDEM software for simulations. Rocky DEM software developed by the provider of ANSYS Fluent, Rocky DEM enables the simulation of interactions between discrete particles and fluid flow using the coupled CFD-DEM method. Consequently, it serves as a viable replacement for EDEM, which has been extensively applied in agricultural research and engineering. | ||
کلیدواژهها [English] | ||
Computational fluid dynamic, Cylinder sieve, Cleaning system, Discrete element method | ||
مراجع | ||
Almeida, E., Spogis, N., & Silva, M. (2016). Computational study of the pneumatic separation of sugarcane bagasse. Badretdinov, I., Mudarisov, S., Lukmanov, R., Permyakov, V., Ibragimov, R., & Nasyrov, R. (2019). Mathematical modeling and research of the work of the grain combine harvester cleaning system. Computers and Electronics in Agriculture, 165, 104966. https://doi.org/https://doi.org/10.1016/j.compag.2019.104966 Bellocq, B., Ruiz, T., Delaplace, G., Duri, A., & Cuq, B. (2017). Screening efficiency and rolling effects of a rotating screen drum used to process wet soft agglomerates. Journal of Food Engineering, 195, 235-246. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2016.09.023 Berger, R., Kloss, C., Kohlmeyer, A., & Pirker, S. (2015). Hybrid parallelization of the LIGGGHTS open-source DEM code. Powder Technology, 278, 234-247. https://doi.org/https://doi.org/10.1016/j.powtec.2015.03.019 Boac, J. M., Ambrose, R. P. K., Casada, M. E., Maghirang, R. G., & Maier, D. E. (2014). Applications of Discrete Element Method in Modeling of Grain Postharvest Operations. Food Engineering Reviews, 6(4), 128-149. https://doi.org/10.1007/s12393-014-9090-y Casas, G., Mukherjee, D., Celigueta, M. A., Zohdi, T. I., & Onate, E. (2017). A modular, partitioned, discrete element framework for industrial grain distribution systems with rotating machinery. Computational Particle Mechanics, 4(2), 181-198. https://doi.org/10.1007/s40571-015-0089-9 Chu, K. W., Wang, B., Xu, D. L., Chen, Y. X., & Yu, A. B. (2011). CFD–DEM simulation of the gas–solid flow in a cyclone separator. Chemical Engineering Science, 66(5), 834-847. https://doi.org/https://doi.org/10.1016/j.ces.2010.11.026 Cundall, P. A., & Strack, O. D. L. (1979). A discrete numerical model for granular assemblies. Géotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47 Dewicki, G. (2003). Bulk material handling and processing - Numerical techniques and simulation of granular material. 23, 110-113. Dosta, M., Andre, D., Angelidakis, V., Caulk, R. A., Celigueta, M. A., Chareyre, B.,…Weinhart, T. (2024). Comparing open-source DEM frameworks for simulations of common bulk processes. Computer Physics Communications, 296, 109066. https://doi.org/https://doi.org/10.1016/j.cpc.2023.109066 El-Emam, M. A., Shi, W., & Zhou, L. (2019). CFD-DEM simulation and optimization of gas-cyclone performance with realistic macroscopic particulate matter. Advanced Powder Technology, 30(11), 2686-2702. https://doi.org/https://doi.org/10.1016/j.apt.2019.08.015 Emam, M., Zhou, L., Shi, W., Chen, H., Bai, L., & Agarwal, R. (2021). Theories and Applications of CFD–DEM Coupling Approach for Granular Flow: A Review. Archives of Computational Methods in Engineering, 28. https://doi.org/10.1007/s11831-021-09568-9 Fonte, C. B., Oliveira, J. A. A., & Almeida, L. C. (2015). dem-cfd coupling : mathematical modelling and case studies using rocky-dem ® and ansys fluent ®. Guzman Quinonez, L. J. (2024). Simulation of agricultural air seeding systems using the discrete element method and computational fluid dynamics. Han, D., Zhang, D., Yang, L., Li, K., Zhang, T., Wang, Y., & Cui, T. (2017). EDEM-CFD simulation and experiment of working performance of inside-filling air-blowing seed metering device in maize. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 33, 23-31. https://doi.org/10.11975/j.issn.1002-6819.2017.13.004 Horabik, J., & Molenda, M. (2016). Parameters and contact models for DEM simulations of agricultural granular materials: A review. Biosystems Engineering, 147, 206-225. https://doi.org/https://doi.org/10.1016/j.biosystemseng.2016.02.017 Korn, C. (2020). Application of coupled CFD-DEM simulation to separation process in combine harvester cleaning devices. https://doi.org/10.1007/978-3-662-61638-3 Li, H., Li, Y., Gao, F., Zhao, Z., & Xu, L. (2012). CFD–DEM simulation of material motion in air-and-screen cleaning device. Computers and Electronics in Agriculture, 88, 111–119. https://doi.org/10.1016/j.compag.2012.07.006 Li, X., Meng, Y., Zhang, J., Geng, L., & Ji, J. (2018). Design and Test of Cleaning Device for Roller Rubbing Cylinder Sieve of Millet. Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 49, 92-102 and 136. https://doi.org/10.6041/j.issn.1000-1298.2018.10.011 Li, Y., Xu, L., Zhou, Y., Li, B., Zhenwei, L., & Li, Y. (2018). Effects of throughput and operating parameters on cleaning performance in air-and-screen cleaning unit: A computational and experimental study. Computers and Electronics in Agriculture, 152, 141-148. https://doi.org/10.1016/j.compag.2018.07.019 Maxey, M. R., & Riley, J. J. (1983). Equation of motion for a small rigid sphere in a nonuniform flow. The Physics of Fluids, 26(4), 883-889. https://doi.org/10.1063/1.864230 Norourzi, H., Zarghami, R., Sotudeh-Gharebagh, R., & Mostoufi, N. (2016). Coupled CFD-DEM Modeling: Formulation, Implementation and Application to Multiphase Flows. https://doi.org/10.1002/9781119005315 Ren, B., Zhong, W., Chen, Y., Chen, X., Jin, B., Yuan, Z., & Lu, Y. (2012). CFD-DEM simulation of spouting of corn-shaped particles. Particuology, 10(5), 562-572. https://doi.org/https://doi.org/10.1016/j.partic.2012.03.011 Rosales, H. (1896). Classifying Crushed Ore by Trommels. Nature, 53(1378), 487-488. https://doi.org/10.1038/053487d0 Simonyan, K., & Yiljep, Y. (2008). Investigating grain separation and cleaning efficiency distribution of a conventional stationary rasp-bar sorghum thresher. 10. Sturm, M., Wirtz, S., Scherer, V., & Denecke, J. (2010). Coupled DEM-CFD Simulation of Pneumatically Conveyed Granular Media. Chemical Engineering & Technology, 33(7), 1184-1192. https://doi.org/https://doi.org/10.1002/ceat.201000162 Ullah, A., Hong, K., Gao, Y., Gungor, A., & Zaman, M. (2019). An overview of Eulerian CFD modeling and simulation of non-spherical biomass particles. Renewable Energy, 141, 1054-1066. https://doi.org/https://doi.org/10.1016/j.renene.2019.04.074 Walker, P. M., Kelley Tr Fau - Smiciklas, K. D., & Smiciklas, K. D. (2008). Evaluation of pulverized trommel fines for use as a soil amendment. (0960-8524 (Print)). Wan, X., Shu, C., Xu, Y., Jiacheng, Y., Li, H., & Liao, Q. (2018). Design and experiment on cylinder sieve with different rotational speed in cleaning system for rape combine harvesters. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 34, 27-35. https://doi.org/10.11975/j.issn.1002-6819.2018.14.004 Wee Chuan Lim, E., Wang, C.-H., & Yu, A.-B. (2006). Discrete element simulation for pneumatic conveying of granular material. AIChE Journal, 52(2), 496-509. https://doi.org/https://doi.org/10.1002/aic.10645 Yuan, J., Li, H., Qi, X., Hu, T., Bai, M., & Wang, Y. (2020a). Optimization of airflow cylinder sieve for threshed rice separation using CFD-DEM. Engineering Applications of Computational Fluid Mechanics, 14(1), 871-881. https://doi.org/10.1080/19942060.2020.1778540 Yuan, J., Li, H., Qi, X., Hu, T., Bai, M., & Wang, Y. (2020b). Optimization of airflow cylinder sieve for threshed rice separation using CFD-DEM. Engineering Applications of Computational Fluid Mechanics, 14, 871-881. https://doi.org/10.1080/19942060.2020.1778540 Yuan, J., Wu, C., Li, H., Qi, X., Xiao, X., & Shi, X. (2018). Movement rules and screening characteristics of rice-threshed mixture separation through a cylinder sieve. Computers and Electronics in Agriculture, 154, 320-329. https://doi.org/https://doi.org/10.1016/j.compag.2018.09.012 | ||
آمار تعداد مشاهده مقاله: 24 تعداد دریافت فایل اصل مقاله: 45 |