
تعداد نشریات | 163 |
تعداد شمارهها | 6,761 |
تعداد مقالات | 72,821 |
تعداد مشاهده مقاله | 131,603,986 |
تعداد دریافت فایل اصل مقاله | 103,400,063 |
بررسی تغییرات کاربری اراضی کشاورزی شهرستان اهواز در بازۀ زمانی سالهای 2000 تا 2020 با استفاده از فناوری سنجش از دور | ||
مهندسی بیوسیستم ایران | ||
دوره 56، شماره 1، فروردین 1404، صفحه 51-70 اصل مقاله (2.48 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijbse.2025.389807.665586 | ||
نویسندگان | ||
کورش اندکائی زاده1؛ عباس عساکره* 2؛ سعید حجتی3 | ||
1گروه مهندسی بیوسیستم ، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران | ||
2گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران | ||
3گروه مهندسی علوم خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، ایران | ||
چکیده | ||
تغییرات کاربری اراضی یکی از چالشهای اصلی در مدیریت منابع طبیعی است و میتواند پیامدهای جدی زیستمحیطی، اقتصادی، اجتماعی و فرهنگی به همراه داشته باشد. هدف از این پژوهش بررسی تغییرات کاربری اراضی شهرستان اهواز از سال 2000 تا 2020 میلادی با استفاده از تحلیل تصاویر ماهوارهای، جهت ارائه دید کلی در زمینه تغییرات کاربری اراضی جهت مدیریت تغییرات اراضی و برنامهریزی شهری است. در این راستا، تصاویر ماهواره لندست مورد استفاده قرار گرفت و طبقهبندی اراضی در چهار کاربری شامل اراضی کشاورزی، مناطق انسان ساخت، اراضی بایر و پهنههای آبی برای سالهای 2000، 2007، 2014 و 2020 میلادی با بهرهگیری از شاخصهای طیفی و الگوریتم طبقهبندی حداکثر احتمال انجام شد. مقادیر ضریب کاپا برای سالهای 2000، 2007، 2014 و 2020 به ترتیب برابر با23/87، 59/88، 26/91 و 23/93 درصد و شاخص دقت کلی به ترتیب برابر با 56/89، 35/91، 58/93 و 89/94 درصد محاسبه گردید. نتایج نشان داد که در دوره مورد مطالعه، مساحت اراضی با کاربری کشاورزی و مناطق انسانساخت به ترتیب با 77/2 و 97/2 برابر افزایش یافته است. افزایش اراضی کشاورزی عمدتا ناشی از تبدیل اراضی بایر به کشاورزی بوده است. همزمان با این تغییرات، گسترش اراضی انسان ساخت منجر به کاهش اراضی کشاورزی مرغوب در حاشیه شهرها شده است. این تغییرات شدید در کاربری اراضی طی دو دهه اخیر، نشاندهنده ضرورت برنامهریزی دقیق، علمی و مبتنی بر مشارکت تمامی ارگانهای دخیل در تغییر کاربری اراضی در راستای کاهش پیامدهای منفی زیستمحیطی، اجتماعی و اقتصادی ناشی از تغییرات کاربری اراضی و حفظ منابع طبیعی منطقه است. | ||
کلیدواژهها | ||
اراضی کشاورزی؛ تغییرات کاربری اراضی؛ حداکثر احتمال؛ سنجش از دور؛ شهرستان اهواز | ||
عنوان مقاله [English] | ||
Investigating changes in agricultural land use in Ahvaz county between 2000 and 2020 using using landsat satellite images | ||
نویسندگان [English] | ||
Korosh Andekaeizadeh1؛ Abbas Asakereh2؛ Saeid Hojati3 | ||
1Department of Biosystems Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran. | ||
2Department of Biosystems Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Iran, Ahvaz, Iran | ||
3Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran, Email | ||
چکیده [English] | ||
Land use change is a major challenge in natural resource management and can have significant environmental, economic, social, and cultural consequences. The aim of this Study is to investigate land use changes in Ahvaz County from 2000 to 2020 using remote sensing, in order to provide an overview of land use changes for land management and urban planning. Images were acquired from Landsat satellites, and land classification into four land use types, including agricultural lands, built-up areas, barren lands, and water bodies, was performed for the years 2000, 2007, 2014, and 2020 using spectral indices and the maximum likelihood classification algorithm. The Kappa coefficient for the years 2000, 2007, 2014, and 2020 were 87.23%, 88.59%, 91.26%, and 93.23%, respectively, and the overall accuracy index was 89.56%, 91.35%, 93.58%, and 94.89%, respectively. The results showed that, during the study period, the area of land agriculture and built-up land use increased by 2.77 and 2.96 times, respectively. The increase in agricultural land was mainly due to the conversion of barren lands to agriculture. The increase in built-up areas has led to a decrease in the fertile agricultural lands around cities. The drastic changes in land use in the last two decades indicate the need for careful, scientific, and participatory planning by all agencies involved in land use change and those in charge of affairs, in order to reduce the negative environmental, social, and economic consequences and to preserve the natural resources of the region. | ||
کلیدواژهها [English] | ||
Agricultural lands, Ahvaz county, land use changes, Maximum likelihood, remote sensing | ||
مراجع | ||
Abiyat, M., Abiayat, M., & Abiyat, M. (2021). Modeling the Process of Spatio-Temporal Changes in LandUse and Urban Development of Ahvaz Based on Spatial Planning Approach. Town and Country Planning, 13 (1), 215-245. Doi: 10.22059/jtcp.2020.313706.670174. (in Persian). Ahmad, MN., Shao, Z., & Javed, A. (2023). Modelling land use/land cover (LULC) change dynamics, future prospects, and its environmental impacts based on geospatial data models and remote sensing data. Environmental Science and Pollution Research, 30(12), 32985-33001. DOI:10.1007/s11356-022-24442-2. Ahmadpour, A., Solaimani, K., Shokri, M., & Ghorbani, J. (2014). Comparison of three common methods in supervised classification of satellite data for vegetation studies. Journal of RS and GIS for Natural Resources, 5(3), 77-89. (in Persian). Andreu, A., Dube, T., Nieto, H., Mudau, A.E., González-Dugo, M.P., Guzinski, R., & Hülsmann, S., (2019). Remote sensing of water use and water stress in the African savanna ecosystem at local scale–Development and validation of a monitoring tool. Physics and Chemistry of the Earth, Parts A/B/C, 112, 154-164. Arowolo, AO., & Deng, X. (2018). Land use/land cover change and statistical modelling of cultivated land change drivers in Nigeria. Regional environmental change, 18, 247-259. Arunyawat, S., & Shrestha, RP. (2016). Assessing land use change and its impact on ecosystem services in Northern Thailand. Sustainability, 8(8), 768. Campbell, JB. (2002). Introduction to remote sensing. Guilford Press. Canaz, S., Aliefendioglu, Y., & Tanrıvermis, H. (2017). Change detection using Landsat images and an analysis of the linkages between the change and property tax values in the Istanbul Province of Turkey. Journal of Environmental Management, 200, 446-455. https://doi.org/10.1016/j.jenvman.2017.06.008. Chen, D., Lu, X., Hu, W., Zhang, Ch., & Lin, Y. (2021). How urban sprawl influences eco environmental quality: Empirical research in China by using the Spatial Durbin model. Ecological Indicators, 131, 108-113. Chen, L., Huang, H., Han, D., Wang, X., Xiao, Y., Yang, H. & Du, J. (2023). Investigation on the spatial and temporal patterns of coupling sustainable development posture and economic development in World Natural Heritage Sites: A case study of Jiuzhaigou, China. Ecological Indicators, 146, 109920. Da silva cruz, J., Cavalcante Blanco, C., & de Oliveira Júnior, J. (2022). Modeling of land use and land cover change dynamics for future projection of the Amazon number curve. Science of the Total Environment, 811, 152348. https://doi.org/10.1016/j.scitotenv.2021.152348. Dorodian, H., & Drodian, A. (2017). Social and Ecological Impacts of Agricultural Land Use Change. Journal of Land Management, 5(2), 81-97. Doi: 10.22092/lmj.2018.115849. (in Persian). Fahong, W., Xuqing, W., & Sayre, K. (2004). Comparison of conventional, flood irrigated, flat planting with furrow irrigated, raised bed planting for winter wheat in China. Field Crops Res, 87, 35–42. FAO. (2015). The state of food and agriculture: Social protection and agriculture. Food and Agriculture Organization of the United Nations. Farhadi, N., Kiyani, A., & Ebadi, H. (2019). Target detection from high-resolution remote sensing images using deep learning methods. Iranian Journal of Remote Sensing and GIS, 11(1), 48-64. Doi: 10.52547/gisj.11.1.48. (in Persian). Foroutan, S., Shariat, M., Kheirkhah zarkesh, M., Sarvar, R. (2020). Investigation of the trend of land use changes in Rey city using remote sensing data. Journal of Environmental Research and Technology, 7(5), 55-66. (in Persian). Goodarzi Mehr, S. (2010). Comparison of BEC, SAM, SVM, MLC and neural network classification methods for field separation using ETM+ sensor images. The Second National Conference on Agriculture and Sustainable Development (Opportunities and Challenges Ahead). 11 pages. (in Persian). Ilori, CO., Pahlevan, N., & Knudby, A. (2019). Analyzing performances of different atmospheric correction techniques for Landsat 8: Application for coastal remote sensing. Remote Sensing, 11(4), 469. IPCC. (2019). Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Islam, GT., Islam, AS., Shopan, AA., Rahman, MM., Lázár, AN., & Mukhopadhyay, A. (2015). Implications of agricultural land use change to ecosystem services in the Ganges delta. Journal of environmental management, 161, 443-452. Javed, A., Cheng, Q., Peng, H., Altan, O., Li, Y., Ara, I., Huq, E., Ali, Y., & Saleem, N. (2021). Review of spectral indices for urban remote sensing. Photogrammetric Engineering & Remote Sensing, 87(7), 513-524. Jiang, H., Hu, H., Zhong, R., Xu, J., Xu, J., Huang, J., & Lin, T. (2020). A deep learning approach to conflating heterogeneous geospatial data for corn yield estimation: a case study of the US Corn Belt at the county level. Global Change Biology, 26 (3), 1754–1766. Doi: https://doi.org/10.1111/gcb.14885. Jiang, H., Hu, H., Zhong, R., Xu, J., Xu, J., Huang, J., & Lin, T. (2020). A deep learning approach to conflating heterogeneous geospatial data for corn yield estimation: a case study of the US Corn Belt at the county level. Glob. Chang. Biol, 26 (3), 1754–1766. Ju, J., & Masek, J.G. (2016). The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data. Remote Sensing Environment, 176, 1–16. Doi: https://doi.org/10.1016/j.rse.2016.01.001. Khazaei, A., Abbaspour, M., Babaei Kafaky, S., Taghavi, L., & Rashidi, Y. (2023). Investigating and predicting land use changes in Tehran metropolis using remote sensing technology. Environmental Sciences, 21(2), 121-138. (in Persian). Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., Coomes, O. T., Dirzo, R., Fischer, G., Folke, C., George, P. S., Homewood, K., Imbernon , J., Leemans, R., Li, X., Moran, E. F. Mortimore, M., Ramakrishnan, P. S., Richards, J. F., Skanes, H., Staffen, W., Stone, G. D., Svdin, U., Veldkamp, T., Vogel, C., & Xu, W. (2001). The causes of land-use and land-cover change: moving beyond the myths. Global Environmental Change, 11, 261-269. Doi: https://doi.org/10.1016/S0959-3780(01)00007-3. Lillesand, T., Kiefer, R. W., & Chipman, J. (2015). Remote sensing and image interpretation. John Wiley & Sons. Liu, Z., Wu, Y., Zhang, X., Li, M., Liu, C., Li, W., ., Fu, M., Qin, S., Fan, Q., Luo, H., & Lu, C. (2023). Comparison of variable extraction methods using surface field data and its key influencing factors: A case study on aboveground biomass of Pinus densata forest using the original bands and vegetation indices of Landsat 8. Ecological Indicators, 157, 111307. Mishra, M., Bhattacharyya, D., Mondal, B., Paul, S., da Silva, RM., Santos, CAG., & Guria, R., 2025. Forecasting shoreline dynamics and land use/land cover changes in Balukhand-Konark Wildlife Sanctuary (India) using geospatial techniques and machine learning. Science of The Total Environment, 975, 179207. Mombeini, M., Asiae, M., & Karamshahi, A. (2013). Comparison of maximum likelihood and fuzzy methods in the preparation of the land use/cover map of southern Khuzestan using Landsat images. Remote Sensing and Geographical Information System in Natural Resources, 4 (2), 69-79. https://www.sid.ir/paper/189619/en. (in Persian). Murugan, M., Selvaraj, R., & Nagarajan, S. (2022). Assessment of land use land cover change detection in multitemporal satellite images using machine learning algorithms. In Cognitive Systems and Signal Processing in Image Processing (pp. 27-45). Academic Press. Doi: https://doi.org/10.1016/B978-0-12-824410-4.00006-4. Nourozi, A. (2019). Monitoring and prediction of land use changes by remote sensing technique (case study: Dust sources of south-east ahwaz). Msc Thesis, Agricultural Sciences and Natural Resources University of Khuzestan. Molasani, (in Persian). Pôças, I., Calera, A., Campos, I., & Cunha, M. (2020). Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches. Agricultural Water Management, 233, 106081. Ramankutty, N., Evan, AT., Monfreda, C., & Foley, J.A. (2008). Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global biogeochemical cycles, 22(1). Riyahi, V., Ziyaean, F., Azizpor, F., & Daroeii, P. (2018). Determining and checking the cultivated area of crops in Lanjanat area using satellite images. Journal of Applied Researches in Geographical Sciences, 19 (52), 147-169. Doi: 10.29252/jgs.19.52.147. (in Persian). Saha, P. & Gayen, S.K. (2025). A geospatial assessment of land use changes and their influence on land surface temperature in Koch Bihar district, West Bengal. Results in Earth Sciences, 100089. Salem, M., Tsurusaki, N., & Divigalpitiya, P. (2020). Remote sensing-based detection of agricultural land losses around Greater Cairo since the Egyptian revolution of 2011. Land Use Policy, 97,104744. Sreenivas, K., Sekhar, N. S., Saxena, M., Paliwal, R., Pathak, S., Porwal, M. C., Fyzee, M. A., Rao, S. V. C. K., Wadodkar, M., Anasuya, T., Murthy, M. S. R., Ravisankar, T., & Dadhwal, V. K. (2015). Estimating inter-annual diversity of seasonal agricultural area using multi-temporal resourcesat data. Journal of Environmental Management, 161, 433-442. Doi: https://doi.org/10.1016/j.jenvman.2014.10.031. Talukdar, S., Singha, P., Mahato, S., Pal, S., Liou, Y.A. & Rahman, A. (2020). Land-use land-cover classification by machine learning classifiers for satellite observations—A review. Remote sensing, 12(7), 1135. Tran, T.V., Reef, R., & Zhu, X. (2022). A review of spectral indices for mangrove remote sensing. Remote Sensing, 14(19), 4868. Wang, J., Bretz, M., Dewan, MAA., & Delavar, MA. (2022). Machine learning in modelling land-use and land cover-change (LULCC): Current status, challenges and prospects. Science of the Total Environment, 822, 153559. Wulder, MA., Masek, JG., Cohen, WB., Loveland, TR., & Woodcock, CE. (2012). Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sensing of Environment, 122, 2-10 Xue, J., & Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and applications. Journal of sensors, 1, 1353691. Yi-Ming, L., Lei, Zh., Mei, Zh., Jian, L., Yan, W., Li, S., & Quing-Li, L. (2022). A neural networks based method for suspended sediment concentration retrieval from GF-5 hyperspectral images. Journal of Infrared, Millimeter, and Terahertz Waves, 41, 10.11972. Doi: 10.11972/j.issn.1001-9014.2022.01.029. Zhang, X., Liu, L., Chen, X., Gao, Y., Xie, S., & Mi, J. (2021). Glc fcs30: global land-cover product with fine classification system at 30 m using time-series landsat imagery. Earth Syst. Sci. Data, 13 (6), 2753–2776. Ziaul Hoque, M., Cui, Sh., Islam, I., Xu, L., & Tang, J. (2020). Future Impact of Land Use/Land Cover Changes on Ecosystem Services in the Lower Meghna River Estuary, Bangladesh. Sustainability. 1-18.
| ||
آمار تعداد مشاهده مقاله: 50 تعداد دریافت فایل اصل مقاله: 59 |