
تعداد نشریات | 163 |
تعداد شمارهها | 6,762 |
تعداد مقالات | 72,833 |
تعداد مشاهده مقاله | 131,788,055 |
تعداد دریافت فایل اصل مقاله | 103,503,264 |
A Comprehensive Parametric Analysis of Geometric Effects on the Natural Frequencies of Auxetic and Honeycomb Beams | ||
Journal of Computational Applied Mechanics | ||
دوره 56، شماره 3، مهر 2025، صفحه 694-710 اصل مقاله (1.25 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jcamech.2025.395352.1475 | ||
نویسندگان | ||
S. Mohammad Reza Khalili* 1؛ Javanshir Lotfi1؛ Puneet Mahajan2 | ||
1Center of Research for Composite and Smart Materials and Structures, Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran | ||
2Department of Applied Mechanics, Indian Institute of Technology- Delhi, New Delhi, India | ||
چکیده | ||
This paper Presents a comprehensive finite element method (FEM) study of the free vibration behavior of auxetic and honeycomb beams, using Euler–Bernoulli beam theory (EBBT). For the first time, a systematic parametric analysis is conducted to investigate the impact of unit cell (UC) geometry, including connection angle, link length, and thickness, on the natural frequency of both beam types by considering more than 22,000 different UC geometries. In this regard, a novel and adjustable UC design is employed to directly compare the auxetic and honeycomb configurations. The study also explores the influence of UC row numbers and orientations on the natural frequency of these beams. The results declare that variations in each of them lead to nonlinear increases or decreases in natural frequencies. As well, for most cases under identical conditions, the natural frequencies for honeycomb beams are found to be higher than those for auxetic beams. These findings address a significant gap in the literature and provide valuable insights for the design of lightweight, vibration-resistant structures in applications such as aerospace, automotive, and smart systems. Furthermore, this work contributes to the advancement of parametric design in auxetic and honeycomb beams, offering a framework to support dynamic and vibration performance improvements in engineering applications. | ||
کلیدواژهها | ||
Free vibration؛ Auxetic beam؛ Euler-Bernoulli beam theory؛ Finite element method؛ Natural frequency؛ Honeycomb beam | ||
مراجع | ||
[1] C. Pan, Y. Han, J. Lu, Design and optimization of lattice structures: A review, Applied Sciences, Vol. 10, No. 18, pp. 6374, 2020.
[2] X. Ren, R. Das, P. Tran, T. D. Ngo, Y. M. Xie, Auxetic metamaterials and structures: A review, Smart Materials and Structures, 2018.
[3] M. S. Al-Khazraji, Review on impact, crushing response and applications of re-entrant core sandwich structures, Aircraft Engineering and Aerospace Technology, 2024.
[4] F. Baertsch, A. Ameli, T. Mayer, Finite-Element Modeling and Optimization of 3D-Printed Auxetic Reentrant Structures with Stiffness Gradient under Low-Velocity Impact, Journal of Engineering Mechanics, Vol. 147, No. 7, 2021.
[5] S. K. Bhullar, D. Rana, H. Lekesiz, A. C. Bedeloglu, J. Ko, Y. Cho, Z. Aytac, T. Uyar, M. Jun, M. Ramalingam, Design and fabrication of auxetic PCL nanofiber membranes for biomedical applications, Materials Science and Engineering C, Vol. 81, 2017.
[6] Q. Hu, G. Lu, K. M. Tse, Compressive and tensile behaviours of 3D hybrid auxetic-honeycomb lattice structures, International Journal of Mechanical Sciences, Vol. 263, 2024.
[7] Z. Wang, C. Luan, G. Liao, J. Liu, X. Yao, J. Fu, Progress in auxetic mechanical metamaterials: structures, characteristics, manufacturing methods, and applications, Advanced Engineering Materials, Vol. 22, No. 10, pp. 2000312, 2020.
[8] D. V. Truong, H. Nguyễn, R. Fangueiro, F. Ferreira, Q. Nguyễn, Auxetic materials and structures in the automotive industry: Applications and insights, Journal of Reinforced Plastics and Composites, pp. 07316844251334174, 2025.
[9] H. Mallek, H. Mellouli, M. Allouch, M. Wali, F. Dammak, Energy absorption of 3D-printed PETG and PETG/CF sandwich structures with cellular cores subjected to low-velocity impact: Experimental and numerical analysis, Engineering Structures, Vol. 327, pp. 119653-119653, 2025.
[10] Y. Zhang, W. Z. Jiang, W. Jiang, X. Y. Zhang, J. Dong, Y. M. Xie, K. E. Evans, X. Ren, Recent Advances of Auxetic Metamaterials in Smart Materials and Structural Systems, Advanced Functional Materials, pp. 2421746, 2025.
[11] M. Hedayatian, A. R. Daneshmehr, G. H. Liaghat, The Efficiency of Auxetic Cores in Sandwich Beams Subjected to Low-Velocity Impact, International Journal of Applied Mechanics, Vol. 12, No. 6, 2020.
[12] V. Siniauskaya, H. Wang, Y. Liu, Y. Chen, M. Zhuravkov, Y. Lyu, A review on the auxetic mechanical metamaterials and their applications in the field of applied engineering, Frontiers in Materials, Vol. 11, pp. 1453905, 2024.
[13] S. M. R. Khalili, S. M. A. Alavi, Computation of the homogenized linear elastic response of 2D microcellular re-entrant auxetic honeycombs based on modified strain gradient theory, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 45, No. 1, pp. 19-19, 2022.
[14] K. Wei, Y. Peng, Z. Qu, Y. Pei, D. Fang, A cellular metastructure incorporating coupled negative thermal expansion and negative Poisson's ratio, International Journal of Solids and Structures, Vol. 150, 2018.
[15] A. R. Damanpack, M. Bodaghi, W. H. Liao, Experimentally validated multi-scale modeling of 3D printed hyper-elastic lattices, International Journal of Non-Linear Mechanics, Vol. 108, 2019.
[16] J. Ma, H. Zhang, T.-U. Lee, H. Lu, Y. M. Xie, N. S. Ha, Auxetic behavior and energy absorption characteristics of a lattice structure inspired by deep-sea sponge, Composite Structures, Vol. 354, pp. 118835-118835, 2025.
[17] M. Hosseini, H. Mazaheri, Mechanical behavior of graded combined auxetic-honeycomb structures, International Journal of Mechanical Sciences, Vol. 276, pp. 109223-109223, 2024.
[18] B. M. M, R. M, C. Raja S, P. T. Doutre, F. Vignat, Geometric configuration and parametric evaluation of auxetic meta-materials for enhanced plastic energy dissipation in blast scenarios, Journal of Computational Applied Mechanics, Vol. 56, No. 1, pp. 127-144, 2025.
[19] M. Bodaghi, A. Serjouei, A. Zolfagharian, M. Fotouhi, H. Rahman, D. Durand, Reversible energy absorbing meta-sandwiches by FDM 4D printing, International Journal of Mechanical Sciences, Vol. 173, 2020.
[20] S. Rezaei, J. Kadkhodapour, R. Hamzehei, B. Taherkhani, A. P. Anaraki, S. Dariushi, Design and modeling of the 2D auxetic metamaterials with hyperelastic properties using topology optimization approach, Photonics and Nanostructures - Fundamentals and Applications, Vol. 43, 2021.
[21] J. Lotfi, S. M. R. Khalili, A. R. Damanpack, Micro-Macro Analysis of Hyperelastic Auxetic Lattice Structures under Finite-Strain Regime, International Journal of Mechanical Sciences, pp. 109246-109246, 2024/3//, 2024.
[22] K. M. Bora, S. K. Varshney, C. S. Kumar, Non local analytical and numerical modelling of re-entrant auxetic honeycomb, Engineering Research Express, Vol. 6, No. 2, pp. 025533-025533, 2024.
[23] M. Mohammadimehr, S. V. Okhravi, S. M. Akhavan Alavi, Free vibration analysis of magneto-electro-elastic cylindrical composite panel reinforced by various distributions of CNTs with considering open and closed circuits boundary conditions based on FSDT, JVC/Journal of Vibration and Control, Vol. 24, No. 8, 2018.
[24] M. Jafari, M. Mohammadimehr, Forced vibration control of Timoshenko’s micro sandwich beam with CNT/GPL/CNR reinforced composites integrated by piezoelectric on Kerr’s elastic foundation using MCST, Journal of Computational Applied Mechanics, Vol. 56, No. 1, pp. 15-42, 2025.
[25] G. Şakar, F. Ç. Bolat, The Free Vibration Analysis of Honeycomb Sandwich Beam Using 3D and Continuum Model, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, Vol. 9, No. 6, 2015.
[26] X. Chen, Z. Feng, Dynamic behaviour of a thin laminated plate embedded with auxetic layers subject to in-plane excitation, Mechanics Research Communications, Vol. 85, 2017.
[27] M. H. Zamani, M. Heidari-Rarani, K. Torabi, A novel graded auxetic honeycomb core model for sandwich structures with increasing natural frequencies, Journal of Sandwich Structures and Materials, Vol. 24, No. 2, 2022.
[28] Y. S. Kushwaha, N. S. Hemanth, N. D. Badgayan, S. K. Sahu, Free vibration analysis of PLA based auxetic metamaterial structural composite using finite element analysis, Materials Today: Proceedings, Vol. 56, 2022.
[29] W. Jiang, J. Zhou, J. Liu, M. Zhang, W. Huang, Free vibration behaviours of composite sandwich plates with reentrant honeycomb cores, Applied Mathematical Modelling, Vol. 116, 2023.
[30] R. Hosseini, M. Babaei, A. Naddaf, The influences of various auxetic cores on natural frequencies and forced vibration behavior of sandwich beam fabricated by 3D printer based on third -order shear deformation theory, Journal of Computational Applied Mechanics, Vol. 54, No. 2, 2023.
[31] T. Q. Quan, V. M. Anh, N. D. Duc, Natural frequency analysis of sandwich plate with auxetic honeycomb core and CNTRC face sheets using analytical approach and artificial neural network, Aerospace Science and Technology, Vol. 144, 2024.
[32] N. Namvar, A. Zolfagharian, F. Vakili-Tahami, M. Bodaghi, Reversible energy absorption of elasto-plastic auxetic, hexagonal, and AuxHex structures fabricated by FDM 4D printing, Smart Materials and Structures, Vol. 31, No. 5, 2022/5//, 2022.
[33] A. M. M. Nazmul Ahsan, B. Khoda, Characterizing Novel Honeycomb Infill Pattern for Additive Manufacturing, Journal of Manufacturing Science and Engineering, Transactions of the ASME, Vol. 143, No. 2, 2021.
[34] S. M. R. Khalili, A. R. Damanpack, N. Nemati, K. Malekzadeh, Free vibration analysis of sandwich beam carrying sprung masses, International Journal of Mechanical Sciences, Vol. 52, No. 12, 2010.
[35] A. M. Ahmed, A. M. Rifai, Euler-Bernoulli and Timoshenko Beam Theories Analytical and Numerical Comprehensive Revision, European Journal of Engineering and Technology Research, Vol. 6, No. 7, 2021.
[36] J. N. Reddy, 2015, An Introduction to Nonlinear Finite Element Analysis, 2nd Edn,
[37] M. J. Jweeg, M. Al-Waily, K. K. Resan, Introduction to finite element method: bar and beam applications, in: Energy Methods and Finite Element Techniques, Eds., 2022.
[38] B. Wang, J. Bai, S. Lu, W. Zuo, An open source MATLAB solver for contact finite element analysis, Advances in Engineering Software, Vol. 199, pp. 103798-103798, 2025.
[39] T. Wang, J. Xu, Z. Qi, T. Zhao, Shear stress correction in Euler-Bernoulli beam theory, Journal of Mechanical Science and Technology, 2025.
[40] A. R. Damanpack, M. Bodaghi, W. H. Liao, Contact/impact modeling and analysis of 4D printed shape memory polymer beams, Smart Materials and Structures, Vol. 29, No. 8, 2020.
[41] S. S. Rao, Mechanical Vibrations Sixth Edition in SI Units, Mechanical Vibrations, 2018.
[42] M. Wallbanks, M. F. Khan, M. Bodaghi, A. Triantaphyllou, A. Serjouei, On the design workflow of auxetic metamaterials for structural applications, Smart Materials and Structures, 2022.
[43] F. Xia, Y. Durandet, P. J. Tan, D. Ruan, Three-point bending performance of sandwich panels with various types of cores, Thin-Walled Structures, Vol. 179, pp. 109723-109723, 2022/10//, 2022.
[44] J. Zhang, X. Zhu, X. Yang, W. Zhang, Transient nonlinear responses of an auxetic honeycomb sandwich plate under impact loads, International Journal of Impact Engineering, Vol. 134, 2019.
[45] S. C. Chapra, R. P. Canale, 2021, Numerical Methods for Engineers, Eighth Edition,
[46] A. Daman Pak, J. Lotfi, S. M. R. Khalili, A Finite-Strain Simulation of 3D Printed Airless Tires, Journal of Engineering Mechanics, Vol. 149, No. 10, 2023/10//, 2023. | ||
آمار تعداد مشاهده مقاله: 27 تعداد دریافت فایل اصل مقاله: 62 |