
تعداد نشریات | 163 |
تعداد شمارهها | 6,762 |
تعداد مقالات | 72,837 |
تعداد مشاهده مقاله | 131,854,796 |
تعداد دریافت فایل اصل مقاله | 103,533,015 |
پیشبینی اثر برخی از عوامل اقلیمی آینده بر طول دوره زایشی و عملکرد برخی از ارقام گندم دیم در شهرستان خرمآباد | ||
به زراعی کشاورزی | ||
مقاله 2، دوره 27، شماره 2، تیر 1404، صفحه 189-202 اصل مقاله (1.19 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jci.2025.382374.2896 | ||
نویسندگان | ||
کامران حقی آبی1؛ موسی مسکرباشی* 2؛ مجید نبی پور1؛ سید امیر موسوی3 | ||
1گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران. | ||
2گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران | ||
3گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، خوزستان، ایران. | ||
چکیده | ||
هدف: پژوهش حاضر بهمنظور بررسی تغییرات برخی از عوامل اقلیمی در شهرستان خرمآباد در دورهها (2040-2024، 2060-2041 و 2080-2061) و سناریوهای اقلیمی (RCP2.6، RCP4.5 و RCP8.5) آینده و اثر آنها بر طول دوره زایشی و عملکرد دانه گندم دیم انجام شد. روش پژوهش: برای پیشبینی تغییرات متغیرهای اقلیمی از نسخه هفتم نرمافزار لارس و الگوی HadCM3 و از دادههای اقلیمی 35 ساله (2023-1987) استان، بهعنوان دورۀ پایه استفاده شد. جهت پیشبینی طول دوره زایشی و عملکرد دانه برخی از ارقام گندم دیم نیز از نسخه 1/7 مدل اپسیم استفاده شد. ورودیهای مدل دادههای اقلیمی، خاکی، گیاهی و اطلاعات مدیریتی میباشد. بدین منظور از خروجی مدل لارس بهعنوان ورودی مدل اپسیم استفاده شد. جهت تهیه اطلاعات گیاهی، مدیریتی و خاکی آزمایشی در قالب طرح بلوکهای کامل تصادفی با سه تیمار (ارقام قابوس، کوهدشت و آفتاب) و سه تکرار در مزرعه تحقیقاتی اداره کل هواشناسی استان لرستان واقع در شهرستان خرمآباد در سال زراعی 1401-1400 اجرا شد. با استفاده از اطلاعات آزمایش مزرعهای، ضرایب ژنتیکی ارقام شناسایی و مدل بر مبنای آن بومیسازی شد. جهت صحتسنجی و ارزیابی مدل در شرایط اقلیمی و مدیریتی مختلف نیز از دادههای آزمایشهای میدانی که 10 مزرعه منتخب در شهرستان خرمآباد بود، استفاده شد. یافتهها: نتایج نشان داد که با افزایش غلظت دیاکسیدکربن از 86-18 درصد، دمای کمینه 43-10 درصد، دمای بیشینه 21-6 درصد و میزان بارش 20-2 درصد افزایش خواهد یافت. با افزایش عوامل اقلیمی مذکور، در دورههای اقلیمی آینده طول دوره زایشی رقم قابوس بهطور متوسط بین صفر تا 1/3 درصد و در سناریوهای اقلیمی خوشبینانه تا بدبینانه بین 2/1 تا 8/1 درصد کاهش، خواهد یافت. در دورههای اقلیمی مختلف، طول دوره زایشی رقم آفتاب در بازه 7/1- تا 7/1+ و رقم کوهدشت 1/1- تا 7/2+ درصد تغییر خواهد یافت. با توجه به تغییر طول دوره زایشی، عملکرد دانه ارقام گندم دیم بسته به دوره و سناریوی اقلیمی بهطور متوسط 6/15 تا 2/42 درصد کاهش خواهد یافت. در سناریوهای خوشبینانه و متوسط، میزان کاهش عملکرد دانه رقم قابوس نسبت به دورۀ پایه کمتر از ارقام آفتاب و کوهدشت بوده، اما در سناریوی بدبینانه روند تغییر کرده و میزان کاهش عملکرد دانه رقم کوهدشت کم خواهد بود. با این وجود، در سناریوی بدبینانه نیز در دورههای اقلیمی مختلف رقم قابوس عملکرد بالاتری نسبت به ارقام آفتاب و کوهدشت داشت. نتیجهگیری: با توجه به اینکه کشاورزان قادر نیستند شرایط اقلیمی را کنترل کنند، لذا با اتخاذ استراتژیهای سازگاری مناسب با شرایط اقلیمی منطقه (از جمله انتخاب رقم مناسب، تاریخ کاشت، روش آبیاری، تراکم مناسب و غیره) میتوان اثرات منفی تغییر اقلیم بر رشد، نمو و تولید محصولات کشاورزی را کاهش داد. در این راستا استفاده از مدل زراعی اپسیم نیز در پیشبینی، سناریوسازی و اتخاذ تصمیمهای مدیریتی میتواند راهگشا باشد. | ||
کلیدواژهها | ||
استراتژی سازگاری؛ تغییر اقلیم؛ تغییرات دما؛ مدل اپسیم؛ مدل لارس | ||
عنوان مقاله [English] | ||
Forecasting the Effect of Some Future Climatic Factors During of the Reproductive Period and Grain Yield of Some Rain Fed Wheat Cultivars in Khorramabad City | ||
نویسندگان [English] | ||
Kamran Haghiabi1؛ Mosa MeskarBashi2؛ Majid Nabipour1؛ Seyed Amir Mosavi3 | ||
1Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran. | ||
2Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran | ||
3Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Khuzestan, Iran. | ||
چکیده [English] | ||
Objective: This study aimed to investigate future changes in climatic factors during 2021–2024, 2041–2060, and 2061–2080 under scenarios RCP2.6, RCP4.5, and RCP8.5, and their effects on the reproductive period and grain yield of rain-fed wheat cultivars in Khorramabad. Method: Climate projections were generated using the LARS-WG-V7 software and the HadCM3 model, based on 35 years of historical climate data (1987–2023). To predict changes in the reproductive period and grain yield, the APSIM model was employed, incorporating soil, crop, and management data. The output from LARS-WG-V7 served as input for APSIM. An experiment with a randomized complete block design and three replicates was conducted during 2021–2022 at the Lorestan Province Meteorological Department’s research farm in Khorramabad, including three wheat cultivars: Qaboos, Kohdasht, and Aftab. Genetic coefficients were calibrated based on experimental data, and the model was localized accordingly. Model validation was performed using data from ten farms in Khorramabad. Results: Climate scenario analysis revealed that, with increasing CO₂ concentrations (18–86%), minimum temperatures could rise by 10–43%, maximum temperatures by 6–21%, and precipitation by 2–20%. These climatic changes led to a reduction in the reproductive period: 0–1.3% in Qaboos, –1.7% to +1.7% in Aftab, and –1.1% to +2.7% in Kohdasht, depending on the scenario and period. Grain yield decreased on average by 15.6% to 42.2%. Under optimistic and moderate scenarios, Qaboos maintained higher yields than Aftab and Kohdasht; however, in pessimistic scenarios, Kohdasht showed the least decline, and Qaboos consistently outperformed others across climatic periods. Conclusions: Since farmers cannot control climatic conditions, adopting suitable adaptation strategies—such as selecting optimal cultivars, adjusting planting dates, irrigation methods, and plant density—is vital for sustainable production. The APSIM model is a valuable tool for future forecasting, scenario development, and informed decision-making to enhance regional wheat production under changing climate conditions. | ||
کلیدواژهها [English] | ||
Adaptation strategy, APSIM model, Climate change, LARS model, Temperature changes | ||
مراجع | ||
حجارپور، امیر؛ سلطانی، افشین و ترابی، بنیامین (1394). استفاده از آنالیز خط مرزی در مطالعات خلأ عملکرد (مطالعه موردی گندم در گرگان). نشریه تولید گیاهان زراعی، 8(4)، 201-183.
خلیلی اقدم، نبی؛ مساعدی، ابوالفضل؛ سلطانی، افشین و کامکار، بهنام (1391). ارزیابی توانایی مدل LARS-WG در پیشبینی برخی از پارامترهای جوی سنندج. مجله پژوهشهای حفاظت آب و خاک، 19(4)، 102-85.
Abassi, F., Malbusi, S., Babaeian, I., Asmari, M., & Borhani, R. (2015). Climate change prediction of south Khorasan province during 2010-2039 by using statistical downscaling of ECHO-G data. Journal of Water and Soil, 24(2), 218-233. https://doi.org/10.22067/jsw.v0i0.3218. Ahmed, M., Akram, M. N., Asim, M., Aslam, M., Hassan, F., Higgins, S., Stockle, C., & Hoogenboom, G. (2016). Calibration and validation of APSIM-Wheat and CERES-Wheat for spring wheat under rainfed conditions: Models evaluation and application. Computers and Electronics in Agriculture, 123, 381-401. https://doi.org/10.1016/j.compag.2016.03.015. Asseng, S. Ewert, F., & Martre, P. (2015). Rising temperatures reduce global wheat production. Nature Climate Change, 5, 143-147. https://doi.org/10.1038/nclimate2470. Devkota, K.P., Hoogenbom, G., Boote, K.J., Singh, U., Lamers, J.P.A., Devkota, M., & Velk, P.L.G. (2015). Simulating the impact of water saving irrigation and conservation agriculture practices for rice – wheat systems in the irrigated semi-arid drylands of Central Asia. Agricultural and Forest Meteorology, 214, 266-280. https://doi.org/10.1016/j.agrformet.2015.08.264. Eyshi Rezaie, E., & Bannayan, M. (2012). Rainfed wheat yields under climate change in northeastern Iran. Meteorological Application, 19, 346-354. https://doi.org/10.1002/met.268. FAOSTAT. (2020). Food and Agricultural Organization of the United Nations (FAO), FAOStatistical Database, from http://faostat.fao.org. Gohari, A., Eslamian, S., Abedi-Koupaei, J., Massah Bavani, A., Wang, D., & Madani, K. (2013). Climate change impacts on crop production in Iran’s Zayandeh-Rud River Basin. Science of the Total Environmental, 442, 405-419. Hajjarpoor, A. Soltani, A., & Torabim, B. (2016). Using boundary Line analysis in yield gap studies: Case study of wheat in Gorgan. Journal of Crop Production, 8, 183-201. (In Persian). Hochman, Z., Gobbett, D., Horan, H., & Garcia, J. N. (2017). Data rich yield gap analysis of wheat in Australia. Field Crops Research, 197, 97-106. https://doi.org/10.1016/j.fcr.2016.08.017. Holzworth, D., Huth, N., Devoil, P., Zurcher, E., Herrmann, N., Mclean, G., Chenu, K., & Keating, B. (2014). APSIM-evolution towards a new generation of agricultural systems simulation. Environental Modelleling and Software, 62, 327-350. https://doi.org/10.1016/j.envsoft.2014.07.009. Hussain, S. S., & Mudasser, M. (2019). Prospects for wheat production under changing climate in mountain areas of Pakistan: An econometric analysis. Agricultural Systems, 94, 494–501. https://doi.org/10.1016/j.agsy.2006.12.001. Innes, P. J., Tan, D. K. Y., Van Ogtrop, F., & Amthor, J. S. (2015). Effects of high-temperature episodes on wheat yields in New South Wales, Australia. Agricultural and Forest Meteorology, 208, 95-107. https://doi.org/10.1016/j.agrformet.2015.03.018. Khalili Aghdam, N., Mosaedi, A., Soltani, A., & Kamkar, B. (2012). Evaluation of ability of lars-wg model for simulating some weather parameters in Sanandaj. Journal of Water and Soil Conservation, 19(4), 85-102. (In Persian). Lashkari, A., Alizadeh, A., Eyshi Rezaei, E., & Bannayan, M. (2012). Mitigation of climate change impacts on maize productivity in northeast of Iran: a simulation study. Mitigation Adaptation Strategy Global Change, 17, 1-16. https://doi.org/10.1007/s11027-011-9305-y. Li, Z. T., Yang, J. Y., Drury, C. F., & Hoogenboom, G. (2015). Evaluation of the DSSAT-CSM for simulating yield and soil organic C and N of a long-term maize and wheat rotation experiment in the Loess Plateau of Northwestern China. Agriultural Systems, 135, 90-104. https://doi.org/10.1016/j.agsy.2014.12.006. Lohani, N., Singh, M. B., & Bhalla, P. L. (2020). High temperature susceptibility of sexual reproduction in crop plants. Journal of Experimental Botany, 71, 555-568. https://doi.org/10.1093/jxb/erz426. Martin, M. M., Olesen, J. E., & Porter, J. R. (2014). A genotype, environment and management analysis of adaption in winter wheat to climate change in Denmark. Agricultural and Forest Meteorology, 187, 1-13. https://doi.org/10.1016/j.agrformet.2013.11.009. Mavromatis, T., & Hansen, J. W. (2015). Interannual variability characteristics and simulated crop response of four stochastic weather generators. Agricultural and Forest Meteorology, 109(4), 283-296. https://doi.org/10.1016/S0168-1923(01)00272-6. Navid, S., Jahansuz, M. R., Soufizadeh, S., & Ghafari, M. (2024). Predicting the changes of climatic parameters in alborz province by using the lars -wg model with risk management approach. The Quarterly Journal of Insurance & Agriculture, 13(1), 1-18. Pastor, A. V., Palazzo, A., Havlik, P., Biemans, H., Wada, Y., Obersteiner, M., Kabat, P., & Ludwig, F. (2019). The global nexus of food trade water sustaining environmental flows by 2050. Nature Sustainability, 13, 1-18. https://doi.org/10.1038/s41893-019-0287-1. Pradhan, S., Sehgal, V.K., Bandyopady, K.K., Panigrahi, P., Parihar, C.M., & Jat, S. (2018). Radiation interception, extinction coefficient and use efficiency of wheat crop at various irrigation and nitrogen levels in a semiarid location. Indian Journal of Plant Physiology, 23(3), 416-425. https://doi.org/10.1007/s40502-018-0400-x. Prasad, P.V.V., & Jagadish, S.V.K. (2015). Field crops and the fear of heat stress opportunities, challenges and future directions. Procedia Environmental Sciences, 29, 36-37. https://doi.org/10.1016/j.proenv.2015.07.144. Ray, D.K., Gerber, J.S., MacDonald, G.K., & West, P.C. (2015). Climate variation explains a third of global crop yield variability. Nature Communications, 6, 1-9. https://doi.org/10.1038/ncomms6989. Rezaei, E. E., Siebert, S., & Ewert, F. (2015). Intensity of heat stress in winter wheat phenology compensates for the adverse effect of global warming. Environmental Research Letters, 10 (2), 12-24. https://doi.org/10.1088/1748-9326/10/2/024012. Roberts, E. H., & Summerfield, R. J. (2007). Measurement and prediction of flowering in annual crops. Manipulation of Flowering. Butterworths, London, pp, 17-50. https://doi.org/10.1016/b978-0-407-00570-9.50007-7. Valizadeh, J., Ziaei, S. M., & Mazloumzadeh, S. M. (2013). Assessing climate change impacts on wheat production (a case study). Journal Saudi Soc Agriculture Science, 78, 2-9. https://doi.org/10.1016/j.jssas.2013.02.002. Vanittersum, M.K., Howden, S.M., & Asseng, S. (2016). Sensitivity of productivity and deep drainage of wheat cropping systems in a Mediterranean environment to changes in CO2, temperature and precipitation. Agriculture, Ecosystems & Environment, 97 (1), 25-35. https://doi.org/10.1016/S0167-8809(03)00114-2 Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: an overview. Environmental and Experimental Botany, 61(3), 199-223. . | ||
آمار تعداد مشاهده مقاله: 42 تعداد دریافت فایل اصل مقاله: 33 |