
تعداد نشریات | 163 |
تعداد شمارهها | 6,769 |
تعداد مقالات | 72,911 |
تعداد مشاهده مقاله | 132,164,439 |
تعداد دریافت فایل اصل مقاله | 103,726,455 |
امکان استفاده از پساب کارخانة الکلسازی و مواد جامد حذفشدة آن در غلظتهای مختلف برای تولید ریز جلبک سبز Scenedesmus quadricauda | ||
شیلات | ||
دوره 78، شماره 2، تیر 1404، صفحه 135-147 اصل مقاله (1.23 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jfisheries.2025.391120.1451 | ||
نویسندگان | ||
میلاد مسعودی؛ امیدوار فرهادیان* ؛ عیسی ابراهیمی | ||
گروه شیلات، دانشکدة منابع طبیعی، دانشگاه صنعتی اصفهان، اصفهان، ایران. | ||
چکیده | ||
پرورش ریزجلبک Scenedesmus quadricauda در عصاره پساب کارخانة الکلسازی با هدف بررسی اثرات جامدات معلق بر تراکم سلولی، رشد و زیستتودة جلبکی و ارزیابی پالایش زیستی انجام شد. آزمایش با ۷ تیمار شامل؛ تیمارهای پساب الکلی در غلظتهای ۱، ۵ و ۱۰ درصد (حجم/حجم) و پساب الکلی بدون جامدات معلق ۱، ۵ و ۱۰ درصد و تیمار شاهد BBM هرکدام در 3 تکرار برای یک دورة ۱۴ روزه در قالب طرح کاملاً تصادفی انجام شد. تراکم جلبکی و رشد آن بهترتیب دامنهای از 106×03/1 تا 105×5/85 سلول بر میلیلیتر و 0/153-0/039 در روز را داشت. بیشترین مقدار زیستتوده با 4777/5میلیگرم در لیتر در تیمار پساب الکلی ۱ درصد بهدست آمد و در سایر تیمارها دامنهای از 4198/6–17042میلیگرم بر لیتر داشت. در غلظت زیاد (۵ و ۱۰ درصد) تأثیر جامدات معلق بر زیستتوده قابل توجه نبود و در غلظت ۱ درصد دارای جامدات معلق زیستتودة بیشتری داشت. حذف نیترات و فسفات بهطور معنیداری در تمام تیمارها انجام شد. بیشترین درصد حذف نیترات و فسفات در تیمار الکلی ۱ درصد بدون جامدات معلق بهترتیب ۴۵/۹۶ درصد و 83/90 درصد بهدست آمد. بیشترین حذف BOD5 (95/01درصد) و بیشترین حذف COD (98/13درصد) هر دو در تیمار پساب الکلی ۱۰ درصد بهدستآمد. | ||
کلیدواژهها | ||
پساب الکلی؛ جامدات معلق؛ ریزجلبک؛ زیستتوده؛ کیفیت آب | ||
عنوان مقاله [English] | ||
Possible application of alcohol factory effluent and its removed suspended solids at different concentrations for production of green microalga Scenedesmus quadricuada | ||
نویسندگان [English] | ||
Milad Masoudi؛ Omidvar Farhadian؛ Eisa Ebrahimi | ||
Department of Natural Resources, Isfahan University of Technology, Isfahan, Iran. | ||
چکیده [English] | ||
This study investigated the green microalga Scenedesmus quadricauda in alcohol factory effluent to determine cell density, growth, algal biomass, and bioremediation potential. The experiment carried out with seven treatments including; effluent at concentrations of 1%, 5% and 10% (v/v), effluent without suspended solids at the same concentrations 1%, 5% and 10%, and a control treatment using BBM medium. Each treatment was conducted in triplicate over 14 days in a completely randomized design. Algal cell density and growth rates ranged from 1.03×106 to 5.85×105 cells/mL and from 0.039 to 0.153 per day, respectively. The highest biomass production of 4777.5 mg/L was observed in the 1% effluent treatment, while biomass ranged from 1704.2 to 4198.6 mg/L in other treatments. At higher concentrations (5% and 10%), total suspended solids had no significant effect on biomass production; however, at a 1% concentration, the treatment containing suspended solids showed higher biomass production (P<0.05). Significant removal of phosphate and nitrate occurred across all treatments (P<0.05). The highest nitrate (96.45%) and phosphate (90.83%) removal efficiencies were observed in the 1% effluent treatment without suspended solids. The highest BOD5 removal efficiency (95.01%) and the highest COD removal efficiency (98.13%) both in was achieved in the 10% alcohol effluent treatment. | ||
کلیدواژهها [English] | ||
Alcohol effluent, Biomass, Microalgae, Suspended solids, Water quality | ||
مراجع | ||
Ahmed, S.F., Mofijur, M., Parisa, T.A., Islam, N., Kusumo, F., Inayat, A., Badruddin, I.A., Khan, T.Y., Ong, H.C., 2022. Progress and challenges of contaminant removal from wastewater using microalgae biomass. Chemosphere 286: 131656. DOI: https://doi.org/10.1016/j.chemosphere.2021.131656 AlMomani, F., Ormeci, B., 2016. Performance of Chlorella vulgaris, Neochloris leoabundans, and mixed indigenous microalgae or treatment of primary effluent, secondary effluent and centrate. Ecological Engineering 95: 280-289. DOI: https://doi.org/10.1016/j.ecoleng.2016.06.038 Arora, K., Kaur, P., Kumar, P., Singh, A., Patel, S.K.S., Li, X., Yang, Y.H., 2021. Valorization of wastewater resources into biofuel and value-added products using microalgal system. Frontiers in Energy Research 250 p. DOI: https://doi.org/10.3389/fenrg.2021.646571 Baird, R., Rice, E., Eaton, A., 2017. Standard methods for the examination of water and wastewater. American Public Health Association, 1545 p. Bilotta, G. S., Brazier, R. E., 2008. Understanding the influence of suspended solids (SS) on water quality and aquatic biota. Water Research 42(12), 2849-2861. DOI: https://doi.org/10.1016/j.watres.2008.03.018 Boyd, C.E., 2020. Suspended solids, color, turbidity, and light. Water Quality: An Introduction, pp. 119-133. DOI: https://doi.org/10.1007/978-3-030-23335-8_6 Daneshvar, E., Zarrinmehr, M. J., Koutra, E., Kornaros, M., Farhadian, O., Bhatnagar, A. 2019. Sequential cultivation of microalgae in raw and recycled dairy wastewater: microalgal growth, wastewater treatment and biochemical composition. Bioresource Technology 273, 556-564. DOI: https://doi.org/10.1016/j.biortech.2018.11.059 Daneshvar, E., Zarrinmehr, M. J., Malekzadeh Hashtjin, A., Farhadian, O., Bhatnagar, A. 2018. Versatile application of freshwater and marine water microalgae in dairy wastewater treatment, lipid extraction and tetracycline biosorption. Bioresource Technology 268, 523-530. DOI: https://doi.org/10.1016/j.biortech.2018.08.032 Delrue, F., Alvarez-Diaz, P. D., Fon-Sing, S., Fleury, G., Sassi, J. F. 2016. The environmental biorefinery: Using microalgae to remediate wastewater, a win-win paradigm. Energies 9 (3), 132-151. DOI: https://doi.org/10.3390/en9030132 Falkowski, P.G., Raven, J.A., 2013. Aquatic Photosynthesis. Princeton University Press, New Jersey, US. 483 p. Fitzgibbon, F.J., Nigam, P., Singh, D., Marchant, R., 1995. Biological treatment of distillery waste for pollution‐remediation. Journal of Basic Microbiology 35(5), 293-301. DOI: https://doi.org/10.1002/jobm.3620350504 Foladori, P., Petrini, S., Andreottola, G. 2020. How suspended solids concentration affects nitrification rate in microalgal-bacterial photobioreactorswithout aeration. Heliyon 6, e03088. DOI: https://doi.org/10.1016/j.heliyon.2019.e03088 Fowler, D., Coyle, M., Skiba, U., Sutton, M.A., Cape, J.N., Reis, S., Sheppard, L.J., Jenkins, A., Grizzetti, B., Galloway, J.N., 2013. The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences 368(1621), 20130164. DOI: https://doi.org/10.1098/rstb.2013.0164 Farhadian, O., Heydari Gojani, B., 2020. Energy of Algae, Isfahan Industrial University Press, Isfahan, Iran, 246 p. (In Persian) Fujita, M., Ike, M., Kawagoshi, Y., Miyata, N., 2000. Biotreatment of persistent substances using effective microorganisms. Water Science and Technology 42(12), 93-106. DOI: https://doi.org/10.2166/wst.2000.0247 Gholizadeh, M., Nasrati, M., 2019. Algal treatment of a mixture of urban wastewater and vinasse using Spirulina platensis microalgae. Journal of Health and Environment, Quarterly Scientific-Research Journal, Iranian Association of Environmental Health 3, 423-436. ID: https://sid.ir/paper/145754/fa (In Persian) Huang, S., Chen, Y., Wang, J., Lao, A., Huang, H., Wang, Z., Luo, X., Zheng, Z., 2024. Understanding the dynamics of Microcystis bloom: Unraveling the influence of suspended solids through proteomics and metabolomics approaches. Science of the Total Environment 908, 168079. DOI: https://doi.org/10.1016/j.scitotenv.2023.168079 Heydari, S., Farhadian, O., Soofiani, M., 2011. Biomass production and removal of ammonia and nitrite from fish farm effluent by cultivation of Scenedesmus quadricauda green algae. Environment Science 37(59), 15-28. DOR: https://dor.isc.ac/dor/20.1001.1.10258620.1390.37.59.3.5 (In Persian) Li, F., Amenorfenyo, D.K., Zhang, Y., Zhang, N., Li, C., Huang, X., 2021. Cultivation of Chlorella vulgaris in membrane-treated industrial distillery wastewater: growth and wastewater treatment. Frontiers in Environmental Science 9, 770633. DOI: https://doi.org/10.3389/fenvs.2021.770633 Liu, J., Han, X., Xing, H., Nan, Y., Lin, J., He, J., Chen, S., Wei, Y., Guo, P., 2022. Effects of suspended particles on exopolysaccharide secretion of two microalgae in Jinjiang estuary (Fujian, China). Journal of Marine Science and Engineering 10(2), 277. DOI: https://doi.org/10.3390/jmse10020277 Martinez, M.E., Sanches, S., Jimenes, J.M., Yousfi, F.E., Munoz, L., 2000. Nitrogen and phosphorus removal from urban wastewater by the microalgae Scenedesmus obliqus. Bioresource Technology 73, 263-272. DOI: https://doi.org/10.1016/S0960-8524(99)00121-2 Nagarajan, D., Kusmayadi, A., Yen, H.W., Dong, C.D., Lee, D.J., Chang, J.S., 2019. Current advances in biological swine wastewater treatment using microalgae-based processes. Bioresource Technology 289: 121718. https://doi.org/10.1016/j.biortech.2019.121718 Omori, M., Ikeda, T., 1984. Methods in Marine Zooplankton Ecology. John Wiley, New York, 332 p. Oswald, W.J., Gotass, H.B., 1995. Photosynthesis in sewage treatment. Journal of the Sanitary Engineering Division American Society of Civil Engineers 122, 73-105. DOI: https://doi.org/10.1061/TACEAT.0007483 Pazouki, M., Shayegan, J., Afshari, A., 2006. Investigation of wastewater treatment methods in alcohol production units. Environment Science 39, 19-32. DOR: https://dor.isc.ac/dor/20.1001.1.10258620.1385.32.39.3.0 (In Persian) Plöhn, M., Spain, O., Sirin, S., Silva, M., Escudero-Oñate, C., Ferrando-Climent, L., Allahverdiyeva, Y., Funk, C., 2021. Wastewater treatment by microalgae. Physiologia Plantarum 2, 568-578. DOI: https://doi.org/10.1111/ppl.13427 Satyawali, Y., Balakrishnan, M., 2008. Wastewater treatment in molasses-based alcohol distilleries for COD and color removal: a review. Journal of Environmental Management 86(3), 481-497. DOI: https://doi.org/10.1016/j.jenvman.2006.12.024 Sigee, D.C., 2005. Freshwater Microbiology: Diversity and Dynamic Interaction of Microorganism in the Aquatic Environment. Chichester, UK, Johan Wiley & Sons, p. 542. Tam, N.F.Y., Wong, Y.S., 1989. Wastewater nutrient removal by Chlorella pyrenoidosa and Scenedesmus sp. Environmental Pollution 58, 19-34. DOI: https://doi.org/10.1016/0269-7491(89)90234-0 Voltolina, D., Gómez-Villa, H., Correa, G., 2004. Biomass production and nutrient removal in semi continuous cultures of Scenedesmus sp. (Chlorophyceae) in artificial wastewater, under a simulated day-night cycle. Vie Milieu 54, 21-25. HAL ID: https://hal.sorbonne-universite.fr/hal-03217978v1 Wang, B., Lan, C.Q., 2011. Biomass production and Nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent. Bioresource Technology 102, 5639-5644. DOI: https://doi.org/10.1016/j.biortech.2011.02.054 | ||
آمار تعداد مشاهده مقاله: 6 تعداد دریافت فایل اصل مقاله: 2 |