ABSTRACT
Measuring traffic congestion potential in real-time has been one of the challenges of traffic engineers in managing the problem of traffic congestion. Considering that the basis of the urban planning system is based on capacity measurement and traffic as a sub-branch of this system is not an independent phenomenon. However, it is the result of various demographic, physical, traffic, economic, cultural, and social effects. Based on this, the current research was conducted to analyze the traffic congestion potential in new and old neighborhoods of Urmia, emphasizing physical, traffic, and socio-economic criteria. The type of research based on the goal is applied, and the method of doing the work is descriptive-analytical. The collection of information is done by combining library and field studies. To calculate the coefficient of importance of indicators, the FUCOM method was used, and its results were obtained in the form of coding in Excel and Lingo software. The obtained results indicate that the highest coefficient of importance extracted is related to distance from sports land uses with 0.071, and the lowest is related to the indicator of distance from urban cores with 0.005. To visualize the traffic congestion potential in 16 neighborhoods of the new structure and 13 neighborhoods of the old structure of Urmia city, the CoCoSo model has been used. The obtained results indicate that the traffic potential is higher in the new and old neighborhoods, with a very small difference.
Extended Abstract
Introduction
Transportation and traffic systems as part of urban activities express the dynamism and life of an urban complex. Undoubtedly, a city cannot be imagined alive and dynamic without movement. Measuring traffic congestion potential in real-time has been a great challenge for traffic engineers to manage the problem of traffic congestion, especially during peak periods. The residential and non-residential land use patterns and the spatial framework resulting from the behavioral mechanism between them form the basis of urban travel. A distinguishing feature of land use is its ability or potential to "generate" traffic. Therefore, it is quite natural to relate the land use potential of a piece of land with specific activities to generate a certain amount of traffic flow per day. Because the basis of the urban planning system is based on capacity measurement and traffic as a sub-branch of this system is not an independent phenomenon but is the result of various demographic, physical, traffic, economic, cultural, and social effects, this research uses various physical indicators. The non-physical effects on urban traffic are aimed at solving the gap in Urmia city's traffic planning system and comparing the areas with traffic congestion potential in the new (Region 1) and old (Region 4) textures of Urmia city. The innovation of the current research can be seen in the application of a variety of 25 indicators in the form of 3 physical, traffic, and socio-economic variables, the implementation of the new FUCOM and CoCoSo methods, the use of the Google Maps application to obtain the average volume of traffic, and also the comparative comparison of traffic congestion potential on the scale of old-style neighborhoods. The new one mentioned that the output from it can be used as a way to prioritize the implementation of thematic and local plans to solve the traffic problems of the neighborhoods, compare the traffic efficiency of the types of textures, remove the passing traffic that disturbs peace from the residential areas, rearrange the uses based on the travel rate, etc.
Methodology
According to its purpose, this research is of applied research type, and according to the work method, it has a descriptive-analytical nature. Information was collected through library studies, field studies (including referring to offices to obtain data for comprehensive and detailed plans and comprehensive studies of transport and traffic in Urmia city), and census data from the Iran Statistics Center in 2016. We used the full compatibility method (FUCOM) to weight the indicators. First, we ranked the indicators using a questionnaire and then compiled pairwise comparisons based on the obtained rank. In the next step, the questionnaires with a sample number of 50 were randomly distributed among the elites, and the data were entered into Excel and Lingo software and were calculated and analyzed. After analyzing the questionnaires and calculating the weight of the indicators based on the FUCOM method based on the acceptable error level (DFC) to analyze the traffic congestion potential in the new and old neighborhoods of Urmia city based on 25 indicators, the information layers of the indicators were prepared in the GIS software. Then, the operation was converted into Raster format, and standardization was done based on the purpose of the research. In the next step, using the Zonal tool, traffic potential values have been extracted by separating 29 localities. In the next step, the CoCoSo multi-criteria decision-making method has been used to analyze and evaluate the traffic congestion potential in the new and old neighborhoods textures.
Results and discussion
The results obtained based on the FUCOM multi-criteria decision-making method indicated that the highest coefficient of importance extracted was related to distance from sports uses with 0.071, and the lowest was related to the index of distance from urban cores with 0.005. Also, the analysis of the indicators shows that in the neighborhoods of the new structure (Region 1), out of 16 neighborhoods, 3 neighborhoods are in the area of very low traffic potential, 3 neighborhoods are in the area of low traffic potential, 4 neighborhoods are in the area of medium traffic potential, and 4 neighborhoods are in the area of potential. There is much traffic and 2 neighborhoods are located in the area with a lot of traffic potential. In the neighborhoods of old texture (Region 4), out of 13 neighborhoods, 2 neighborhoods are in the zone of very low traffic potential, 3 neighborhoods are in the zone of low traffic potential, 2 neighborhoods are in the zone of medium traffic potential, 2 neighborhoods are in the zone of high traffic potential, and 4 neighborhoods are in the zone of high traffic potential.
Conclusion
The analysis of the traffic congestion potential in the new neighborhoods (Region 1) and the old neighborhood (Region 4) of Urmia city shows that the traffic potential is higher in the new neighborhoods than in the old neighborhoods, with a very small difference. Also, based on the analysis of 25 indicators, the highest traffic potential among the neighborhoods based on the indicators of distance from green, sports, administrative, commercial, and educational uses, road width, building density, average land price, student and working population, the area covered by public transportation, The number of cars, the service level of roads and the number of households are related to the new texture (Region 1) and are based on the indicators of distance from cultural, recreational, medical and religious uses, distance from urban cores, traffic volume, travel rate of uses, access to multi-story parking, density population and residential and per capita car ownership has the highest traffic potential belonging to old texture neighborhoods (Region 4).
Funding
There is no funding support.
Authors’ Contribution
Authors contributed equally to the conceptualization and writing of the article. All of the authors approved thecontent of the manuscript and agreed on all aspects of the work declaration of competing interest none.
Conflict of Interest
Authors declared no conflict of interest.
Acknowledgments
We are grateful to all the scientific consultants of this paper. |
- آرندت، رندل. (1387). منشور نوشهر گرایی. ترجمه علیرضا دانش و رضا بصیری، چاپ اول، تهران: انتشارات پردازش و برنامهریزی شهری.
- اجزاءشکوهی، محمد و رستگار، محسن. (1394). تحلیل فضایی مراکز ورزشی و بررسی شعاع خدماترسانی آن در شهر زنجان. جغرافیا و توسعه ناحیهای، 13 (1)، 23-43. https://doi.org/10.22067/geography.v13i1.20064
- استروفسکی، واتسلاف. (1395). شهرسازی معاصر از نخستین سرچشمهها تا منشور آتن. ترجمه لادن اعتضادی، چاپ ششم، تهران: مرکز نشر دانشگاهی.
- اکبری، علی و لطفعلیان، نیلوفر. (1398). پیادهراهسازی و حضورپذیری فضای شهری بهمثابه رویکرد اجتماعی به مدیریت تردد (نمونه موردی: بازارچه طرخانی تهران). پژوهشهای انسانشناسی ایران، 9 (2)، 147-168.
- https://doi.org/10.22059/ijar.2020.78434
- احدی، محمدرضا؛ صلاحی مقدم، آرسام و حسنپور، محمدزمان. (1399). ارزیابی اثرهای حملونقل عمومی بر تغییرات کاربری زمین شهری (مطالعه موردی منطقه هفت شهرداری تهران). مهندسی ساختمان و علوم مسکن، 13 (23)، 55-65.
- اسدی، مهدیه؛ رهنما، محمدرحیم و لگزیان، محمد. (1391). بررسی رابطه متقابل مدیریت کاربری زمین و وضعیت حملونقل و ترافیک شهری؛ مطالعه موردی: مجتمع تجاری الماس شرق مشهد. مدیریت شهری، 10 (30)، 131-144.
- پاکزاد، جهانشاه (1400). سیر اندیشهها در شهرسازی 1 (از آرمان تا واقعیت). چاپ ششم، تهران: آرمانشهر.
- پاکزاد، جهانشاه (1400). سیر اندیشهها در شهرسازی 2 (از کمیت تا کیفیت). تهران: آرمانشهر.
- پوراحمد، احمد؛ رضایینیا، حسن و حسینی، علی. (1400). تحلیل سطح دسترسی به فضاهای فراغتی درونشهری با استفاده از روش تحلیل شبکه (موردمطالعه: محلههای مسکونی منطقه 9 تهران). علوم و تکنولوژی محیطزیست، 23 (4)، 1-20.
- تقوایی، مسعود؛ وارثی، حمیدرضا و بهمن اورامان، مظفر. (1391). بررسی پراکنش کاربریهای پزشکی و تأثیر آن بر روی ترافیک شهری با استفاده از مدل AHP(موردمطالعه: مرکز شهر کرمانشاه). مطالعات راهور، 1 (1)، 99-127.
- حسینزاده، نعمت؛ استعلاجی، علیرضا و دانیالی، تهمینه. (1399). طراحی مدلی مکانمحور برای ارزیابی مکانی- فضایی کاربری اراضی شهری با رویکرد مدیریت بحران موردپژوهش: منطقه 19 شهرداری تهران. اطلاعات جغرافیایی (سپهر)، 29 (115)، 139-159. https://doi.org/10.22131/sepehr.2020.47886
- حبیبی، محسن و مسائلی، صدیقه (1378). سرانه کاربریهای شهری. سازمان ملی زمین و مسکن (دفتر مطالعات زمین و مسکن)، چاپ اول، تهران: انتشارات سیما.
- حسینی، باقر و علوی، پژمان. (1397). مکانیابی مساجد شهرستان رشت با بهرهگیری از سیستم اطلاعات جغرافیایی (GIS) به روش AHP (مطالعه موردی: منطقه دو رشت). مهندسی جغرافیایی سرزمین، 2 (4)، 27-38.
- حبیبی، کیومرث. (1392). ارزیابی تجارب جهانی حملونقل و سیاستهای مداخله در بافتهای کهن شهری با تکیهبر پیادهمداری. انجمن علمی معماری و شهرسازی ایران، 4 (5)، 33-48. https://doi.org/10.30475/isau.2014.61961
- خاکسار، حسن؛ بهارزاده، حسین و اشرفی، الهام. (1401). بررسی رابطه خصوصیات هندسی خودروها و تراکم ترافیک. مهندسی عمران فردوسی، 35 (2)، 19-34. https://doi.org/10.22067/jfcei.2022.75645.1127
- خدائی، جواد، و خزاعی، مریم. (1395). ارزیابی مکانگزینی مسجد محلهای در راستای تقویت ساختار هویتی محلات بهعنوان مکانی برای سکونت مطالعه موردی: مشهد. مطالعات شهری، 5 (18)، 5-19.
- زنگیآبادی، علی و سعیدپور، شراره. (1395). تحلیل فضایی پراکنش مراکز فرهنگی و مکانیابی بهینه آن، پژوهش موردی: شهر سقز، پژوهشهای بومشناسی شهری، 7 (1)، 81-94. https://dor.isc.ac/dor/20.1001.1.25383930.1395.7.13.6.6
- سعیدنیا، احمد. (1399). کتاب سبز 1400 راهنمای عمل شهرداریها (کاربری زمین شهری). تهران: وزارت کشور (سازمان شهرداریها و دهیاریهای کشور).
- قریب، فریدون. (1399). شبکه ارتباطی در طراحی شهری. چاپ دوازدهم، تهران: انتشارات دانشگاه تهران.
- کدخدایی، مسعود؛ ضیائی، علی و شاد، روزبه. (1400). اولویتبندی استراتژیهای کنترل تراکم ترافیک در کلانشهرها مطالعه موردی شهر مشهد. مهندسی عمران فردوسی، 34 (3)، 81-97. https://doi.org/10.22067/jfcei.2022.73919.1091
- کریمی، رضا و عابدینی، اصغر. (1396). سنجش پتانسیل ترافیکی در شهرها با استفاده از مدل IHWP (مطالعه موردی: شهر ارومیه). پژوهشنامه حملونقل، 14 (3)، 9-22.
- ممدوحی، امیررضا؛ خاوری، فاطمه و عباسی، محمدحسین. (1402). مطالعه تطبیقی و شناسایی عوامل مؤثر در ایجاد سفرهای اجباری برونشهری. پژوهشنامه حملونقل، 20 (2)، 115-128. https://doi.org/10.22034/tri.2021.262529.2844
- مهندسین مشاور طرح و آمایش. (1398). طرح تفصیلی یکپارچه شهر ارومیه. وزارت مسکن و شهرسازی، سازمان مسکن و شهرسازی استان آذربایجان غربی.
- هدایتنژاد، مصطفی؛ هادیانی، زهره؛ حاجینژاد، علی و عسگری، علی. (1398). تحلیل دسترسی و نظام پراکنش فضایی کاربریها در راستای عدالت توزیعی جهت سرزندگی فضاهای شهری (موردمطالعه: ناحیه 3 منطقه 16 شهر تهران). اقتصاد و مدیریت شهری، 7 (4)، 75-97. https://dor.isc.ac/dor/20.1001.1.23452870.1398.7.28.5.7
- Ahadi, M. R., Salahi Moghadam, A., & Hassan Pour, M. Z. (2020). Evaluating the Impact of Public Transportation on the Land Use Changes (Case Study District 7 of Tehran. Building Engineering & Housing Science, 13 (2), 55-65. [In Persian]
- Ajza Shekohi, M., Rastegar, M., & Mirjafari, R. (2015). Analysis Pattern Spatial Distribution of Sports Centers and Radius of Service by Using GIS A Case Study: Zanjan City. Journal of Geography and Regional Development, 13 (1), 23-43. doi: 10.22067/geography.v13i1.20064 [In Persian]
- Akbari, A., & Lotfalian, N. (2020). Creating Pedestrian Routes and Presence in Urban Spaces as a Social Approach to Traffic Management (Case Study: Tarkhani Bazaar of Tehran). Iranian Journal of Anthropological Research, 9 (2), 147-168. doi: 10.22059/ijar.2020.78434 [In Persian]
- Alghamdi, T., Elgazzar, K., Bayoumi, M., Sharaf, T., & Shah, S. (2019). Forecasting Traffic Congestion Using ARIMA Modeling. 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco.
- Amara, Y., Amamra, Y., & Khemis, S. (2020). Raw GIS to 3D Road Modeling for Real-Time Traffic Simulation. The Visual Computer, (38), 239-256. doi:10.1007/s00371-020-02013-1
- Arendt, R. (2008). The Meaning of Neo-Urbanism. Translated by Alireza Danesh and Reza Basiri. Tehran: Processing and Urban Planning. [In Persian]
- Asadi, M., Rahnama, M.R., Legzian M. (2012). A Research on Interaction between Land Use Management, Urban Transportation & Traffic Situation, Case Study: Almas-e-Shargh Commercial Center. Urban and Rural Management, 10 (30), 131-144. [In Persian]
- Consulting Engineers of Tarho Amayesh (2019). Integrated Detailed Plan of Urmia City. Department of Housing and Urban Development. Housing and Urban Development Organization of West Azarbaijan Province. [In Persian]
- Deveci, M., Pamucar, D., & Gokasar, I. (2021). Fuzzy Power Heronian Function based CoCoSo Method for the Advantage Prioritization of Autonomous Vehicles in Real-Time Traffic. Management. Sustainable Cities and Society, (69), 102846. https://doi.org/10.1016/j.scs.2021.102846
- Ewing, R., & Cervero, R. (2010). Travel and the Built Environment: A Meta-Analysis. Journal of the American Planning Association, 76 (3), 265-294. https://doi.org/10.1080/01944361003766766
- Gharib, F. (2020). Communication Network in Urban Design. Tehran: Tehran University Press. [In Persian]
- Gioli, G., & Milan, A. (2018). Gender, Migration and Global Environmental Change. In Routledge Handbook of Environmental Displacement and Migration, Routledge. Abingdon, 135-150.
- Habibi, K. (2013). Evaluation of Global Transportation Experiences and Intervention Policies in Old Urban Contexts based on Pedestrianization. Association of Architecture and Urban Planning of Iran, 4 (5), 33-48. https://doi.org/10.30475/isau.2014.61961 [In Persian]
- Habibi, M., & Maslami, S. (1999). Per Capita Urban Uses, National Land and Housing Organization (Land and Housing Studies Office). Tehran: Sima Publications. [In Persian]
- Hansen, H.S. (2003). A Fuzzy Logic Approach to Urban Land-Use Mapping. ScanGIS’2003- The 9th Scandinavian Research Conference on Geographical Information Science, Espoo, Finland- Proceedings.
- Hedayatnejad, M., Hadyani, Z., Hajinejad, A., & Asgari, A. (2019). Analysis of Access and Spatial Distribution System of Uses in Line with Distribution Justice for the Vitality of Urban Spaces (Case Study: District 3, District 16, Tehran). Urban Economics and Management, 7 (4), 97-75. http://dorl.net/dor/20.1001.1.23452870.1398.7.28.5.7 [In Persian]
- Hosseini, S.B., & Alavi, S.P. (2019). Locating Mosques in Rasht City Using GIS and AHP Method (Case Study: Rasht District). Geographical Engineering of Territory, 2 (4), 27-38. [In Persian]
- Hosseinzadeh, N., Estelaji, A.R., & Daniali, T. (2020). Designing a Spatial Model for Spatial Assessment of Urban Land Use based on a Crisis Management Approach- Case Study: District 19 Municipality of Tehran. Quarterly of Geographical Data (Sepehr), 29 (115), 139-159. [In Persian] doi: 10.22131/sepehr.2020.47886
- Idris, N. (2022). Minimizing the Congestion Index and Mode Share of Traffic Congestion in Urban Area. Journal of Enterprise and Business Intelligence, 2 (1), 24-32. doi:10.53759/5181/JEBI202202004
- Kadkhodaei, M., Ziaee, S. A., & Shad, R. (2021). Prioritization of Traffic Congestion Control Strategies in Metropolitan Areas, Case Study: Mashhad. Ferdowsi Civil Engineering, 34 (3), 81-97. [In Persian] doi: 10.22067/jfcei.2022.73919.1091
- Karimi, R., & Abedini, A. (2017). Evaluating the Traffic Congestion Potentials in the Cities; Using IHWP Model (Case Study: Urmia City). Journal of Transportation Research, 14 (3), 9-22. [In Persian]
- Khaksar, H., Baharzade, H., & Ashrafy, E. (2022). Modeling the Effects of Vehicle Specifications on Traffic Density. Ferdowsi Civil Engineering, 35 (2), 19-34. doi: 10.22067/jfcei.2022.75645.1127 [In Persian]
- Khodaei, J., & Khazaei, M. (2016). The Assessment of Locating Local Mosques to Rise the Identity Structure of Mahalas as Place for Residency- Case Study Mashhad. Motaleate Shahri, 5 (18), 5-20. [In Persian]
- Kolganov, S.V., & Skutelnik, V.V. (2019). Research of the Possibilities to Increase the Traffic Capacity of Streets in the Central Part of Irkutsk. International Conference on Innovations in Automotive and Aerospace Engineering, Irkutsk, Russia, 632, 1-7.
- Lopa, A.T., Hasrul, M.R., & Yanti, J. (2022). The Impact of Land Use Changes on Trip Generation: A Study in the Tallasa City Corridor. International Journal of Environment, Engineering & Education, 4 (1), 27-35. https://doi.org/10.55151/ijeedu.v4i1.70
- Mamdoohi, A. R., Khavari, F., & Abbasi, M. (2023). Comparative study and Identification of Effective Factors in Interurban Mandatory Trip Generation. Journal of Transportation Research, 20 (2), 115-128. [In Persian] doi: 10.22034/tri.2021.262529.2844
- Meena, S., & Patil, G.R. (2022). Trip Generation for Shopping Malls in Developing Cities. European Transport, (86), 1-16. https://dx.doi.org/10.48295/ET.2022.86.2
- Muttaqien, A.R.P., & Basuki, Y. (2020). Trip Rate Model of Attraction in Higher Education Zone. Journal of Advanced Civil and Environmental Engineering, 3 (1), 1- 8. doi:10.30659/jacee.3.1.1-8
- Okeke, F.O., Gyoh, L., & Echendu, I.F. (2021). Impact of Land Use Morphology on Urban Transportation. Civil Engineering Journal, 7 (10), 1753-1773. doi: 10.28991/cej-2021-03091758
- Pakzad, J. (2021). The Course of Ideas in Urban Planning 1 (From Ideal to Reality). Tehran: Arman Shahr. [In Persian]
- Pakzad, J. (2021). The Course of Ideas in Urban Planning 2 (From Quantity to Quality). Tehran: Arman Shahr. [In Persian]
- Pamucar, D., Stevic, Z., & Sremac, S. (2018). A New Model for DeterminingWeight Coefficients of Criteria in MCDM Models: Full Consistency Method (FUCOM). Symmetry, 10 (9), 1-22. https://doi.org/10.3390/sym10090393
- Pourahmad, A., Rezaienia, H., Hosseini, A., Andisheh, S., & Amini, M. (2021). Analyzing the Level of Access to Leisure Spaces within the City Using Network Analysis Method: the Case Study of Neighborhoods in District 9 of Tehran. Journal of Environmental Science and Technology, 23 (4), 1-20. [In Persian] doi: 10.30495/jest.2021.10212
- Saeednia, A. (2020). Green Book 1400 Municipalities Practice Guide (Urban Land Use). Tehran: Ministry of Interior (Organization of Municipalities and Rural Districts of the Country). [In Persian]
- Shi, J. (2020). Comprehensive Evaluation Method of Urban Traffic System for Sustainable Development. Conference on Social Science and Modern Science, Dalian, China.
- Shi, X., Qi, H., Shen, Y., Wu, G., & Yin, B. (2021). A Spatial- Temporal Attention Approach for Traffic Prediction. IEEE Transactions on Intelligent Transportation Systems, 22 (8), 4909-4918. doi: 10.1109/TITS.2020.2983651
- Spears, S., Boarnet, M.G, Handy, S., & Rodier, C. (2014). Impacts of Land-Use Mix on Passenger Vehicle Use and Greenhouse Gas Emissions. California Environmental Protection Agency, 1-6.
- Strufsky, V. (2016). Contemporary Urban Planning from the First Sources to the Charter of Athens, Translated by Laden Etzadi. Tehran: Academic Publishing Center.
- Taghvae, M., Varesi, H.R., & Bahman Oraman, M. (2012). A Study of Variance of Medical Applications and its Impact of Urban Traffic using AHP Model (Case- Study: Kermanshah Downtown). Traffic Law Enforcement Research Studies, 1 (1), 99-127. [In Persian]
- Wang, Zh., Gao, G., Liu, X., & Lyu, W. (2019). Verification and Analysis of Traffic Evaluation Indicators in Urban Transportation System Planning Based on Multi-Source Data A Case Study of Qingdao City, China. IEEE Access, 7, 110103-110115. doi:10.1109/ACCESS.2019.2933663
- Weerasinghe, O., & Bandara, S. (2019). A GIS Based Methodology to Demarcate Modified Traffic Analysis Zones in Urban Areas. Moratuwa Engineering Research Conference, Moratuwa, Sri Lanka, 498-503. doi: 10.1109/MERCon.2019.8818778
- WWW.Numbeo.com
- Yazdani, M., Zarate, P., Zavadskas, E. K., & Turskis, Z. (2019). A Combined Compromise Solution (CoCoSo) Method for Multi-Criteria Decision-Making Problems. Management Decision, 57 (9), 2501-2519. https://doi.org/10.1108/MD-05-2017-0458[In Persian]
- Zangiabadi, A., & Saidpour, S. (2016). Spatial Analysis of the Dispersion of Cultural Centers and Its Optimal Location, Case Study: Saqqez. Journal of Urban Ecology Researches, 7 (13), 81-94. [In Persian] https://dorl.net/dor/20.1001.1.25383930.1395.7.13.6.6[In Persian]
|