![سامانه نشر مجلات علمی دانشگاه تهران](./data/logo.png)
تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,036 |
تعداد مشاهده مقاله | 125,507,186 |
تعداد دریافت فایل اصل مقاله | 98,771,022 |
بازسازی ردلرزههای از بین رفته با استفاده از تبدیل رادون سهمی | ||
فیزیک زمین و فضا | ||
مقاله 3، دوره 35، شماره 4 - شماره پیاپی 308936، بهمن 1388 اصل مقاله (671.69 K) | ||
نویسندگان | ||
محمدعلی ریاحی1؛ ناصر بنیحسن2؛ نوید امینی3 | ||
1مؤسسه ژئوفیزیک دانشگاه تهران، دانشیار | ||
2آیافام- ژئومار- کیل- آلمان- دانشجوی دکتری | ||
3مؤسسه ژئوفیزیک دانشگاه تهران- دانشجوی دکتری | ||
چکیده | ||
در اثر محدودیتها و یا عوارض طبیعی در برداشت دادههای لرزهای بازتابی، برخی از ردلرزهها ثبت نمیشوند و یا به دلیل داشتن نوفه شدید در مرحله پردازش حذف میشوند. این معضل باعث پایین آمدن درصد پوشش و در نتیجه کاهش قدرت تفکیک در مقطع برانبارش میشود، از این رو بازسازی ردلرزههای معیوب و درونیابی و برونیابی آنها مسئلهای مهم در پردازش دادههای لرزهای است. یک روش برای بازیابی ردلرزههای از بین رفته، تبدیل رادون سهمی است. این روش بر پایه فرض سهمی بودن رخدادهای لرزهای استوار است. به این منظور ابتدا رخدادهای لرزهای با تصحیح برونراند نرمال جزئی به سهمی تقریب زده میشوند. در ادامه با تبدیل رادون سهمی پیشرو به حوزه رادون منتقل میشود و پس از تبدیل معکوس، ردلرزههای صفر اولیه به طور جزئی بازسازی میشوند. پس از تکرار این فرایند، ردلرزهها به صورت کامل بازسازی میشوند. در این مقاله پس از مطرح ساختن اصول نظری، کارایی الگوریتم روی دادههای مصنوعی ارزیابی و نتایج آن در حالت واقعی نیز بررسی میشود. | ||
کلیدواژهها | ||
بازسازی ردلرزهها؛ تبدیل رادون؛ درونیابی دادهها | ||
عنوان مقاله [English] | ||
Trace reconstruction by Parabolic Radon Transform | ||
نویسندگان [English] | ||
Mohammad Ali Riahi1؛ Naser Bani hasan2؛ Navid Amini3 | ||
چکیده [English] | ||
Due to some difficulties during seismic data acquisition, like natural obstacles (high voltage electricity cable, bad coupling of geophones with the ground) some of the traces cannot be recorded. Since bad traces make the final stack unclear, usually bad traces go mute while processing. The final image of the earth’s crust is highly dependent of the quality and resolution of acquired data and muting these traces may cause lack of resolution. In this paper, parabolic radon transform is utilized to restore data. Radon transform is a method in which data is transferred to t-q domain from t-x domain. One of the remarkable features in this domain is that data with irregular spacing can be used as input. If these data transfer to t-q domain and transfer back to t-x domain, they will be partially restored. If we carry out this process in an iterative algorithm, the entire missed data will be reconstructed. This method uses an interpolation and extrapolation approach so that it predicts the wavelength and amplitude of each missed trace using adjacent traces. There are some algorithms for which we do not need pre-information in order to make weighted coefficients as these coefficients are defined automatically. The algorithm offered here uses this approach and weighted coefficients metrics are defined using the Haber norm. Based on this method, this equation should be solved for each frequency component, meaning that this method utilizes the iterative least square approach. Our experience shows that solving the equation forward and backward, maximum 10 times restores the missed traces. Some assumptions have been made in order to simplify the question. We assumed that there is no lateral velocity variation in layers. Moreover, the length of the receiver array is small compared with the depth of the target. With this assumption we can approximate the events to hyperbola. To apply the parabolic transform, we need to approximate the hyperbolic events to parabolic events. Thus, we applied a partially NMO correction on the data. The data will be corrected to the original hyperbolas, the same amount of initial NMO correction right after the reconstruction. The algorithm is run on a couple of synthetic models with various locations missed traces. We modeled parabolic and hyperbolic CMP gathers with 50 traces in which 11 traces are missed in near offset as well as in middle offset. After running the algorithm on the model, the traces were restored very well. However, far offset missing data cannot be extrapolated completely. We applied a white noise in the middle offset; the result was in agreement with the original wiggle synthetic CMP gather. Since the parabolic transform is used, the data is fully restored providing the events are completely parabolic. The reconstruction algorithm is applied on real marine data afterwards. This CMP gather contains 51 traces irregularly spaced and sampled by 4ms rate. Some of the traces from the middle and near offsets were muted arbitrarily. After applying a set of forward and inverse Radon transform, the data were restored remarkably and concentration of energy in semblance panel became much better. This method makes no artifact as this is interpolation and/or extrapolation of existing hyperbolic events. Although hyperbolic algorithm is our convention (since the events are hyperbolic), this is not applicable due to computational difficulties. It is possible to perform parabolic Radon transform in frequency domain quite fast. Since the L matrix (inverse radon transform matrix) contains full information about traces and their distribution, lack of a trace or irregular spacing of them does not play an important role. | ||
کلیدواژهها [English] | ||
Data interpolation, Radon transform, Trace reconstruction | ||
آمار تعداد مشاهده مقاله: 2,773 تعداد دریافت فایل اصل مقاله: 1,960 |