![سامانه نشر مجلات علمی دانشگاه تهران](./data/logo.png)
تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,037 |
تعداد مشاهده مقاله | 125,509,164 |
تعداد دریافت فایل اصل مقاله | 98,772,384 |
معرفی روشی جدید برای برآورد ضرایب توابع گویا | ||
فیزیک زمین و فضا | ||
مقاله 8، دوره 36، شماره 1 - شماره پیاپی 310067، اردیبهشت 1389 اصل مقاله (287.66 K) | ||
نویسندگان | ||
محمدعلی شریفی1؛ بابک امجدی پرور2؛ موسی شیبانی3 | ||
1پردیس دانشکدههای فنی، دانشگاه تهران- استادیار | ||
2پردیس دانشکدههای فنی، دانشگاه تهران- دانشجوی کارشناسی ارشد | ||
3پردیس فنی دانشگاه تهران- دانشجوی کارشناسی ارشد | ||
چکیده | ||
با توجه به کاربرد روز افزون توابع گویا (rational functions) در تصویرسنجی (فتوگرامتری) این معادلات مورد توجه محققان زیادی است. یکی از معایب این معادلات، ناپایداری مدل در برآورد پارامترها یا همان ضرایب است. در واقع مسئله برآورد ضرایب توابع گویا RFCs) Rational Function Coefficients,) با استفاده از نقاط کنترل موجود در اغلب موارد یک مسئلهای بدطرح (Ill-posed) است که باید روشی را برای پایدارسازی (regularization) این معادلات اتخاذ کرد. همچنین مدل ریاضی برآورد ضرایب برخلاف روش معمول که یک مدل پارامتری خطی در نظر گرفته میشود، در واقع مدلی ترکیبی است. در این مقاله ضرایب معادلات با استفاده از مدل ترکیبی که مدل کاملتری نسبت به مدل پارامتری خطی میباشد برآورد شده است، همچنین با توجه به بدطرح بودن مسئله از روش پایدارسازی تیخونوف (Tikhonov regularization) برای پایدار کردن مسئله در حالت مدل ترکیبی استفاده شده است. با مقایسه روش پیشنهادی در برآورد ضرایب معادلات گویا (تبدیل مسئله به مدل ترکیبی همراه با پایدارسازی مسئله با روش تیخونوف) با روشهای پیشین مورد استفاده در برآورد ضرایب، روش پیشنهادی دقت بهتری را در نقاط چک به دست میدهد. | ||
کلیدواژهها | ||
بدطرح؛ پایدارسازی؛ توابع گویا؛ کمترین مربعات (Least squares؛ مدل پارامتری خطی (linear parametric model)؛ مدل ترکیبی (combined model) | ||
عنوان مقاله [English] | ||
A new method for estimating Rational Function Coefficients | ||
نویسندگان [English] | ||
Mohammad Ali Sharifi1؛ Babak Amjadiparvar2؛ Mosa Sheybani3 | ||
چکیده [English] | ||
Rational functions are of great interest to engineers and geoscientists. The rational polynomial coefficient (RPC) model as a generalized sensor model has been introduced as an alternative for the rigorous sensor model of the satellite imaging. Numerical instability of normal equations is the only single obstacle to the implementation of these functions. Practically, estimating rational function coefficients using available control points is mostly an ill-posed problem. Condition number of the normal matrix in the linear parametric model is relatively large. Therefore, a regularization method has to be employed in order to stabilize the equations. Implementation of the regularization technique improves the solution in the linear parametric model. The optimum value of the regularization parameter is estimated using the generalized cross validiation technique. Moreover, simplification of the observation equations leads to a linear observation model which is the most frequently utilized approach for estimation of the unknown coefficients. However, rigorous modeling is recast in a combined adjustment model. Due to nonlinearity of the combined model, the initial values of unknown parameters are needed. The initialization process can be done using the estimated parameters from the linear parametric model. Here, rational function coefficients are estimated using a combined model. Furthermore, the Tikhonov regularization method is employed for regularization of the problem in the combined model. Five different methods are implemented and their performances are compared. Comparison of the root mean squared errors shows that the implementation of the combined model with an appropriate regularization parameter significantly improves the accuracy of the estimated coefficients. The regularized combined model gives the minimum root mean squared errors which is about half the value of the linear parametric model. The proposed method outperforms the already existing ones from an accuracy and computational point of view. | ||
کلیدواژهها [English] | ||
Combined model, Ill-posed, Least squares, Linear parametric model, Rational functions, Regularization | ||
آمار تعداد مشاهده مقاله: 2,572 تعداد دریافت فایل اصل مقاله: 2,394 |