تعداد نشریات | 161 |
تعداد شمارهها | 6,488 |
تعداد مقالات | 70,094 |
تعداد مشاهده مقاله | 123,124,333 |
تعداد دریافت فایل اصل مقاله | 96,359,545 |
New Method for Calculation Mixing Rule and Modification Semi-empirical Models for Solubility Modeling in Supercritical Solvent | ||
Journal of Chemical and Petroleum Engineering | ||
مقاله 7، دوره 44، شماره 1 - شماره پیاپی 422333، 2011، صفحه 63-72 اصل مقاله (205.94 K) | ||
شناسه دیجیتال (DOI): 10.22059/jchpe.2011.22349 | ||
نویسندگان | ||
Reza Orouj1؛ Hosein Abolghasemi2؛ Zoha Vatani2؛ Mohammad Mahdavian2 | ||
1سازمان انرژی اتمی | ||
2مهندسی شیمی | ||
چکیده | ||
The critical properties of a solute are required for modeling of the solubility by the equation of state. For many compounds, the critical properties are not available. So, group contribution method is utilized as a common method to estimate these properties. But, it leads to the consecutive errors in calculations of the solubility modeling. In this study, Soave-Redlish-Kowang (SRK) and Peng-Robinson equation of states with Huran-Vidal mixing rules were used for modeling of the solubility. A new method for evaluating of C2 (Huran-Vidal mixing rule parameter) is recommended as a function of temperature and pressure. For solubility modeling by semi-empirical correlation, the new forms of Chrastil and Mendez equations were used. Finally, the modeling of solubility for 20 compounds by these methods has been investigated. Results show that the AARD% for the models with semi-empirical equations (Charstil, Aguilera, Gordillo, Mendez, modified Charstil and modified Mendez) are 12.07, 11.71, 34.89, 19.89, 11.17 and 15.70 respectively; and for SRK, PR EOS are 14, 19.85 respectively. | ||
کلیدواژهها | ||
میکسر ستلر؛ اندازه قطرهها عامل فعال سطحی؛ جزء منتقلشونده؛ مدل تجربی | ||
مراجع | ||
1- Lee, J. M. and Soong,Y. (1985). "Effects of surfactants on the liquid-liquid dispersion in agitated vessels." Ind. Eng. Chem. Process Des. Deu., Vol. 24 ,PP. 118-121. 2- Hoffer, M. S. and Resnick, W. (1979). "A study of agitated liquid-liquid dispersions." Chem. Eng. Res. and Des. Vol. 57, PP. 8-14. 3- Tcholakova, S., Denkov, N. D. and Danner, T. (2004). "Role of surfactant type and concentration for the mean drop size during emulsification in turbulent flow." Langmuir, Vol.20, No. 18, PP. 7444-7458. 4- Skelland, A.H.P. and Jeffrey, S. (1998). "Transient drop size in agitated liquid-liquid systems, as influenced by the direction of mass transfer and surfactant concentration." Ind. Eng. Chem. Res., Vol. 31, PP. 2556- 2563. 5- Zhou, G. and Kresta, S.M.(1998). "Evolution of drop size distribution in liquid-liquid dispersions for various impellers.” Chem. Eng. Sci., Vol. 53, No. 11, PP. 2099-2113. 6- Desnoyer, C., Masbernat, O. and Gourdon, C. (2003). “Experimental study of drop size distributions at high phase ratio in liquid–liquid dispersions.” Chem. Eng. Sci., Vol. 58, PP. 1353 – 1363. 7- Calabrese, R. V., Chang, T. P. K., and Dang, P. T. (1986).” Drop breakup in turbulent stirred-tank contactors. ”AICHE, Vol. 32, No .4, PP. 657–666. 8- Baldyga, J., Bourne, J. R., Pacek, A. W., Amanullah, A. and Nienow, A.W. (2001). “Effects of agitation on drop size in turbulent dispersions: Allowance for intermittency.” Chem. Eng. Sci., Vol. 56, PP. 3377–3385. 9- Lagisetty, J. S. , Das, P. K., Kumar, R., and Ghandi, K. S. (1986).” Breakage of viscous and non-newtonian drops in stirred dispersions.” Chem. Eng. Sci., Vol. 41, No. 1, PP. 65–72. 10- Doulah, M. S. (1975)." An effect of hold-up on drop sizes in liquid–liquid dispersions.” Industrial and Engineering Chemistry Fundamentals, Vol. 14, No. 2, PP. 137–138. 11- Singh, K.K., Mahajani, S.M., Shenoy, K.T. and Ghosh, S.K. (2008). "Representative drop sizes and drop size distributions in A/O dispersions in continuous flow stirred tank." Hydrometallurgy, Vol. 90, PP. 121- 136. | ||
آمار تعداد مشاهده مقاله: 2,057 تعداد دریافت فایل اصل مقاله: 3,363 |