تعداد نشریات | 161 |
تعداد شمارهها | 6,488 |
تعداد مقالات | 70,090 |
تعداد مشاهده مقاله | 123,117,916 |
تعداد دریافت فایل اصل مقاله | 96,351,959 |
Investigation of the Local Nusselt Number of the Symmetrical Liquid-Liquid Jets Emitting from a Nozzle | ||
Journal of Chemical and Petroleum Engineering | ||
مقاله 9، دوره 44، شماره 1 - شماره پیاپی 422333، 2011، صفحه 83-91 اصل مقاله (503.69 K) | ||
شناسه دیجیتال (DOI): 10.22059/jchpe.2011.22351 | ||
نویسندگان | ||
Mohammad Memari؛ Dariush Bastani؛ Iraj Goodarznia | ||
مهندسی شیمی و نفت | ||
چکیده | ||
The aim of this paper is to study the local Nusselt number of the symmetrical liquid-liquid jets emitting from a nozzle. Equations obtained from theoretical works are arranged in the form of a computerized model. The validity of this model was tested by the data from an experimental paper [1]. After few adjustments the model predicted the experimental data with a reasonable accuracy. Making sure of the model acceptable operation the effects of changes of hydrodynamic and thermal parameters on local Nusselt number were investigated which eventually lead to an equation for predicting numerical values of local Nusselt number as a function of liquid jet length. | ||
کلیدواژهها | ||
سطح آزاد؛ انتقال حرارت؛ عدد ناسلت؛ جت های متقارن مایع؛ CFD؛ VOF روش | ||
مراجع | ||
1- Bastani, D. and Memari, M. (2008). ”Experimental investigation Liquid-Liquid Jets and determination of its hydrodynamic characteristics.” 12th Iranian Chemical Engineering Congress. 2- Fossa, M. (1995). “A simple model to evaluate direct contact heat transfer and flow characteristics in annular two-phase flow.” Int. J. Heat and Fluid Flow, 16: 272-279. 3- Mitrovic J. and Stephan K. (1996). “Mean fluid temperature in direct contact heat exchangers without phase change.” Int. J. of Heat and Mass Transfer, 39(13):2245-2750. 4- Shahihi, M. K. and Ozbelge, T. A. (1995). “Direct contact heat transfer between two immiscible liquids flowing in a horizontal concentric annulus.” Int. J. Multiphase Flow, 21(6):1025-1036. 5- Oh, S., Nguyen, H. D. and Paik, S. (2000). “A legendre-spectral element method for flow and heat transfer about an accelerating droplet.” Int. J. Numer. Meth. Fluids, 33:59-79. 6- Feng, Z. and Michaelides, E. (2000). “A numerical study on the transient heat transfer from a sphere at high Reynolds numbers.” Int. J. of Heat and Mass Transfer, 43:219-229. 7- Rider, W. J. and Kothe, D. B. (1998). “Reconstructing volume tracking.” J. of Compt. Physics, 141: 112-152. 8- Scardovelli, R. and Zaleski, S. (1999). “Direct numerical simulation of free-surface and interfacial flow.” Annu. Rev. Fluid Mech., 3 1:567-603. 9- Tomotika, S. (1935). “On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid.” Proceedings of the Royal Society of London a 150, 322–337. 10- Rayleigh, J.W.S. (1879). “On the instability of jets.” Proceedings of the London Mathematical Society, 10, 4–13. 11- Kitamura, Y., Mishima, H. and Takahashi, T. (1982). “Stability of jets in liquid–liquid systems.” Canadian Journal of Chemical Engineering, 60, 723–731. 12- Teng, H., Kinoshita, C.M. and Masutani, S.M. (1995). “Prediction of droplet size from breakup of cylindrical liquid jets.” International Journal of Multiphase Flow, 21, 129–136. 13- Das, T.K., (1997a). “Prediction of jet breakup length in liquid–liquid systems using the Rayleigh–Tomotika analysis.” Atomization and Sprays, 7, 549–559. 14- Bright, A. (1985). “Minimum drop volume in liquid jet breakup.” Chemical Engineering Research and Design, 63, 59–66. 15- Das, T.K. (1997b). “Prediction of jet breakup length in liquid–liquid systems using the Rayleigh–Tomotika analysis.” Atomization and Sprays, 7, 549–559. 16- Richards, J.R., Beris, A.N. and Lenhoff, A.M. (1993). “Steady laminar flow of liquid–liquid jets at high Reynolds numbers.” Physics of Fluids, A 5, 1703–1717. 17- Hirt, C.W., Nichols, B.D. (1981). “Volume of fluid (VOF) method for the dynamics of free boundaries.” Journal of Computational Physics, 39, 201–225. 18- Skelland, A.H.P. and Johnson, K.R. (1974). “Jet Break-up in Liquid-. Liquid Systems.” Can. J. Chem. Eng., 52,732-738. 19- Davis, M. R. and Rerkshanandana, P. (1991). “The influence of large eddies on thermal mixing.” Int. J. of Heat and Mass Transfer, 34(7):1633-1647. 20- Qian, J., Polymeropoulos, C. E., Ulisse, R. (1992). “Liquid jet evolution from a gas chromatographic injector”. J. of Chromatography, 609:269-276. 21- Storr, G. J. and Behnia, M. (2000). “Comparisons between experiment and numerical simulation using a free surface technique of free-falling liquid jets.” Experimental Thermal and Fluid Science, 22:79-91. 22- Shunji, H., Jiro, K., Shiro, M., Museok, S. and Grétar, T. (2007). "Breakup mode of an axisymmetric liquid jet injected into another immiscible liquid.” Chemical Engineering Science, 61, 3986 – 3996 23-Memari, M. and Bastani, D. (2009), “Numerical simulation of axisymmetric jet of dispersion phase to continue phase form a nozzle.” Iranian Journal Chemical and Chemical Engineering. (submitted) | ||
آمار تعداد مشاهده مقاله: 2,191 تعداد دریافت فایل اصل مقاله: 2,009 |