تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,106,456 |
تعداد دریافت فایل اصل مقاله | 97,211,736 |
پیشبینی روزانه غلظت کربن منوکسید با استفاده از مدل تلفیقی انتخاب پیشرو- عصبی فازی براساس تحلیل پایداری جوّ؛ بررسی موردی: شهر تهران | ||
فیزیک زمین و فضا | ||
مقاله 14، دوره 38، شماره 2 - شماره پیاپی 1105695، مرداد 1391، صفحه 183-201 اصل مقاله (443.26 K) | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2012.28443 | ||
نویسندگان | ||
خسرو اشرفی1؛ غلامعلی هشیاریپور2؛ بابک نجار اعرابی3؛ هما کشاورزی شیرازی1 | ||
1استادیار، دانشکده محیط زیست، دانشگاه تهران، ایران | ||
2دانشجوی دکتری، موسسه ژئوفیزیک، دانشگاه هامبورگ، آلمان | ||
3دانشیار، گروه مهندسی برق و کامپیوتر، دانشکده فنی، دانشگاه تهران، ایران | ||
چکیده | ||
امروزه، آلودگی هوای کلانشهرها به یک چالش زیستمحیطی اساسی تبدیل شده است. در مورد شهر تهران، که 90 درصد از وزن کل آلایندههای هوای آن از خودروها منتشر میشود، کربن منوکسید نسبت به بقیه آلایندههای هوا اهمیت بیشتری دارد، بهطوریکه بیش از 75 درصد وزن آلایندههای این شهر را دربر میگیرد. با توجه به اینکه تحلیل پایداری لایه سطحی جوّ، درحکم شاخص وضعیت تلاطمی آن، بیشترین اثر را در پراکنش آلایندههای هوا دارد، میتواند در پیشبینی آلودگی هوا مورد توجه قرار گیرد. در این تحقیق بهمنظور تحلیل وضعیت پایداری جوّ نزدیک سطح زمین، دو نگرش مورد توجه قرار گرفته است: در نگرش اول سرعت باد، درحکم شاخص تلاطم مکانیکی و تابش خورشیدی درحکم شاخص تلاطم همرفتی منظور شده و در نگرش دوم، مقیاس سرعت اصطکاکی، بهمنزلة شاخص تلاطم مکانیکی و گرادیان دما، بهمنزلة شاخص تلاطم همرفتی مورد توجه قرار گرفته است. براساس این دو نگرش، دو مجموعه مدل عصبی- فازی بهمنظور پیشبینی غلظت روزانه کربن منوکسید در جوّ تهران توسعه داده شدهاند که در هر مجموعه یک مدل بدون اِعمال انتخاب ورودی و یک مدل با اِعمال انتخاب ورودی درنظر گرفته شده است. انتخاب ورودی مدلها با استفاده از روش انتخاب پیشرو صورت گرفته است تا تعداد ورودیهای مدل تا حد امکان کاهش یابد. پس از مقایسه نتایج پیشبینی مدلها، مشخص شد که اِعمال روش انتخاب پیشرو با کاهش تعداد ورودیها نه فقط حجم محاسبات را کاهش میدهد بلکه بر دقت مدل نیز میافزاید. درنهایت، مدل توسعه دادهشده براساس گرادیان باد و گرادیان دما درحکم مدل برتر معرفی شده است. | ||
کلیدواژهها | ||
انتخاب پیشرو؛ پایداری جوّ؛ عصبی-فازی؛ کربن منوکسی | ||
عنوان مقاله [English] | ||
Prediction of daily carbon monoxide concentration using hybrid FS-ANFIS model based on atmospheric stability analysis; case study: city of Tehran | ||
نویسندگان [English] | ||
Khosrou Ashrafi1؛ Gholamali Hoshyaripour2؛ Babak Nadjar Araabi3؛ Homa Keshavarzi Shirazi1 | ||
چکیده [English] | ||
In big cities, air pollution has become a great environmental issue nowadays. In city of Tehran, 90% of air pollutants are generated from traffic, among which carbon monoxide (CO) is the most important one because it constitutes more than 75% by weight of total air pollutants. This study aims to predict daily CO concentration of the urban area of Tehran using a hybrid forward selection- ANFIS (adaptive neuro-fuzzy inference system) model based on atmospheric stability analysis. Atmospheric stability is the most important parameter affecting dilution of air pollutants. It plays a central role in the investigation of parameters that affect ambient pollutant concentrations. Therefore, it can be considered as an input parameter for developing air pollution prediction models. Although different methods are used for stability determination with varying degrees of complexity, most of them incorporate considerations of both mechanical and buoyant turbulence. In this study two aspects for atmospheric stability analysis are considered and thus, two models are developed. ANFIS1: frictional wind velocity and temperature gradient are used for representing mechanical and buoyant turbulence, respectively. For predicting CO concentration at a certain time step (CO (t)), total candidates for inputs are: CO (t-1), u10(t), u10(t-1), rad(t), rad(t-1). ANFIS2: wind velocity and solar radiation are considered as the indicators of mechanical and buoyant turbulence, respectively. For predicting CO concentration at a certain time step (CO(t)), there are 9 candidates for the inputs: CO (t-1), u10(t), u10(t-1), u24(t), u24(t-1), temp(t), temp (t-1), dtemp(t), dtemp(t-1). Input selection is a crucial step in ANFIS implementation. This technique is not engineered to eliminate superfluous inputs. In the case of a high number of input variables, irrelevant, redundant, and noisy variables might be included in the data set, simultaneously; meaningful variables could be hidden. Moreover, high number of input variables may prevent ANFIS from finding the optimized models. Therefore, reducing input variables is recommended even though this causes some of the information to be omitted. In this research, input selection is carried out based on forward selection (FS) procedure. When the number of candidate covariates (N) is small, one can choose a prediction model by computing a reasonable criterion (e.g., RMSE, SSE, FPE or cross-validation error) for all possible subsets of the predictors. However, as N increases, the computational burden of this approach increases very quickly. This is one of the main reasons why step-by-step algorithms like forward selection are popular. In this approach, which is based on linear regression model, first step is ordering of the explanatory variables according to their correlation with the dependent variable (from the most to the least correlated variable). Then, the explanatory variable, which is best correlated with the dependent variable, is selected as the first input. All remained variables are then added one by one as the second input according to their correlation with the output and the variable which most significantly increases the correlation coefficient (R2) is selected as the second input. This step is repeated N-1 times for evaluating the effect of each variable on model output. Finally, among N obtained subsets, the subset with optimum R2 is selected as the model input subset. The optimum R2 is integral to a set of variables after which adding new variable dose not significantly increase the R2. FS is applied on the input sets of this study which reduces the inputs of the models to 5 and 4 for ANFIS1 and ANFIS2, respectively. In order to identify the effect of FS on modeling results, the complete input sets are considered. Thus, 4 models are defined: ANFIS1, ANFIS2, FS- ANFIS1 and FS-ANFIS2. The selected inputs are used for Neuro-fuzzy modeling approach. Neuro-fuzzy modeling refers to the method of applying various learning techniques developed in the neural network literature to fuzzy modeling or Fuzzy Inference System (FIS). A specific approach in neuro-fuzzy development is ANFIS (adaptive neuro-fuzzy inference system), which has shown significant results in modeling nonlinear functions. ANFIS uses a feed forward network to optimize parameters of a given FIS to perform well on a given task. The learning algorithm for ANFIS is a hybrid algorithm, which is combination of the gradient descent and least squares methods. The used FIS here is the Sugeno first-order fuzzy model with its equivalent ANFIS architecture. Results show that the forward selection reduces not only calculation burden but also the output error. FS-ANFIS models produce more accurate results with R2 of 0.52 and 0.41 for FS-ANFIS1 and FS-ANFIS2, respectively. Moreover, although both models can satisfactorily predict trends in CO concentration level, FS-ANFIS2, which is based on temperature and wind speed gradients, is the superior model. | ||
کلیدواژهها [English] | ||
Atmospheric stability, carbon monoxide, forward selection, neuro-fuzzy | ||
آمار تعداد مشاهده مقاله: 2,789 تعداد دریافت فایل اصل مقاله: 1,865 |