تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,115,658 |
تعداد دریافت فایل اصل مقاله | 97,219,845 |
پیشبینی و تشخیص ناهنجاریهای یونسفری زلزله در محتوای کلی الکترون نقشههای جهانی یونسفر(GIM) براساس تکنیک تبدیل موجک بهمنظور کاهش مخاطرات (زلزلۀ7/7 ریشتری سراوان ،16 آوریل2013) | ||
مدیریت مخاطرات محیطی | ||
مقاله 7، دوره 1، شماره 1، مهر 1393، صفحه 83-96 اصل مقاله (1.31 M) | ||
نوع مقاله: پژوهشی کاربردی | ||
شناسه دیجیتال (DOI): 10.22059/jhsci.2014.52617 | ||
نویسندگان | ||
فریده سبزه ای* 1؛ محمدعلی شریفی2؛ مهدی آخوندزاده3 | ||
1کارشناس ارشد ژئودزی - هیدروگرافی گروه مهندسی نقشهبرداری، پردیس دانشکدههای فنی دانشگاه تهران، ایران | ||
2دانشیار، گروه مهندسی نقشهبرداری و پژوهشکده مهندسی فناوریهای اطلاعات مکانی، پردیس دانشکدههای فنی دانشگاه تهران، ایران | ||
3استادیار، گروه مهندسی نقشهبرداری، پردیس دانشکدههای فنی دانشگاه تهران، ایران | ||
چکیده | ||
زلزلهها رفتاری ناشناخته و غیرخطی دارند و با توجه به بزرگای زلزله، شاهد تغییراتی در لیتوسفر، اتمسفر و یونسفر خواهیم بود. پارامترهای یونسفر در برابر زلزلههای بزرگ بسیار حساساند و تحت تاًثیر قرار میگیرند. علاوه بر تغییرات یونسفری بهوجودآمده بر اثر فعالیتهای خورشیدی، تغییرات کوتاهمدت قابل توجهی در یونسفر دیده میشود که ناشی از تغییرات سریع در فعالیتهای ژئومغناطیسی است. بنابراین، تشخیص تغییرات نابهنجار یونسفری ناشی از فعالیتهای خورشیدی و ژئومغناطیسی، بسیار دشوار خواهد بود، بهویژه زمانیکه توفانهای ژئومغناطیسی کوچکی هم دخالت داشته باشند. پردازش سری زمانی محتوای کلی الکترون (TEC) یونسفری بهمنظور تشخیص نابهنجاریهای یونسفری، موضوع بسیار مهم و کاربردی برای کاهش مخاطرات زلزله، از طریق پیشبینی بهنگام و در اختیار داشتن زمان لازم برای تصمیمگیری و آمادهسازی وضعیت حاکم برای کاهش تلفات جانی و مالی در زمان رخداد زلزله خواهد بود. از دو تکنیک موجک برای سریهای زمانی غیرخطی و غیرثابت محتوای کلی الکترون استفاده شده است: تبدیل موجک تحلیلی (AWT) برای آشکارسازی تغییرات در TEC و تبدیل موجک متقابل (XWT) برای آنالیز روابط دوطرفۀ میان تغییرات نابهنجاریهای یونسفری و شاخصهای ژئومغناطیسی اطراف مرکز زلزله در حوزۀ زمان- فرکانس. زلزلهای در منطقۀ سراوان (53،62 درجة شرقی و 107،28 درجة شمالی) با بزرگای 7/7 در مقیاس ریشتر در تاریخ 16 آوریل2013 در زمان بیشینۀ فعالیت خورشیدی رخ داد. در این تحقیق، این زلزله تحت بازۀ 62روزه (1 مارس تا 31 آوریل 2013) توسط نقشة جهانی یونسفر (GIM) با نرخ دوساعته، بررسی شد و با در نظر گرفتن شاخصهای ژئومغناطیسی و خورشیدی موجود، شناسایی عوامل بهوجودآورندة تغییرات در محتوای کلی الکترون صورت گرفت. تحت شرایط آرام ژئومغناطیسی، تنها زلزله، دلیل این تغییرات دانسته شد و در فاصلة 10 تا 15 روز قبل از زلزله و 7 روز پس از زلزله، تغییرات شدیدی مشاهده شد. در بازۀ مورد مطالعه، سطح فعالیت خورشیدی بالا بود و مقادیر TEC تحت تأثیر تابشهای نابهنجار خورشیدی دچار تغییرات شدیدی شد. لازم است تغییرات فعالیتهای خورشیدی و فعالیتهای ژئومغناطیسی از روی TEC یونسفری حذف شود تا خطایی رخ ندهد. برای شناسایی اینکه آیا اغتشاشات یونسفری تشخیصدادهشده توسط AWT در ارتباط با فعالیتهای ژئومغناطیسی است یا نه، از XWT برای سریهای زمانی EC وAp در بازۀ زمانی 1 مارس تا 31 آوریل 2013 استفاده شده است. یک منطقۀ مشترک پرانرژی از طریق دو سری زمانی استخراج شده که برای تاریخ 17 مارس 2013 است. بر این اساس، این افزایش در محتوای کلی الکترون یونسفری بهدلیل آثار توفانهای ژئومغناطیسی بوده است. در بازۀ رخداد زلزله هیچ نقطۀ مشترک پرانرژی مشاهده نشد که نشان میدهد در زمان وقوع زلزله، فعالیت ژئومغناطیسی در ایجاد آنومالی یونسفری نقشی نداشته و عامل دیگری این ناهنجاری را در مقادیر یونسفری بهوجود آورده است که احتمالاً دلیلی بهجز زلزله نمیتواند داشته باشد. به این ترتیب، بهمنظور کاهش مخاطرات، با بررسی پارامترهای یونسفری میتوان زمان و فرکانس وقوع زلزله را با داشتن سری زمانی از تغییراتTEC پیشبینی و استخراج کرد. | ||
کلیدواژهها | ||
تبدیل موجک؛ زلزلة سراوان؛ شاخص ژئومغناطیس؛ کاهش مخاطرات؛ محتوای کلی چگالی الکترون؛ یونسفر | ||
عنوان مقاله [English] | ||
Prediction and Detection of Earthquake Ionospheric Anomalies in Total Electron Content of the GIM based on Wavelet Transform Technique and Hazards Reduction (the M 7.7 Saravan Earthquake of April 16, 2013) | ||
نویسندگان [English] | ||
Farideh Sabzehee1؛ Mohammad Ali Sharifi2؛ Mehdi Akhoond Zadeh3 | ||
1M.Sc. in Geodesy, Department of Surveying and Geomatics Engineering, University College of Engineering, University of Tehran, Iran | ||
2Associate Professor, Department of Surveying and Geomatics Engineering, University College of Engineering, University of Tehran, Iran | ||
3Assistant Professor, Department of Surveying and Geomatics Engineering, University College of Engineering, University of Tehran, Iran | ||
چکیده [English] | ||
Earthquakes show unknown nonlinear behavior and given the magnitude of the earthquake, we would encounter certain changes in lithosphere, atmosphere and ionosphere. The ionospheric parameters have been found to be sorely susceptible to major earthquakes. In addition to the ionospheric variations generated by solar activity, there are remarkable temporary changes in the ionosphere that are generated by prompt changes in geomagnetic activity. Therefore, recognizing the ionospheric anomaly variations generated by seismic activity or geomagnetic activity is hard, exclusively when there is interposition from little geomagnetic storms. Processing the time series of total electron content (TEC), in order to ionospheric anomalies detection is a significant subject. Two wavelet methods were used to nonlinear and non-stationary time series of the TEC: the analytic wavelet transform (AWT) to detect variation in the TEC, and cross wavelet transform method (XWT) to analyze the mutual relationship between the variability of the ionospheric anomalies and the geophysical indices around the epicenter of the earthquake in the time-frequency domain. The Saravan (28.107˚N, 62.053˚E) earthquake happened on 16 April 2013 during the period of high solar activity in the 24th solar cycle. In this study, we utilized the CODE GIMs from 1 March 2013 to 31 April 2013 for the Saravan earthquake. Under quiet geomagnetic condition, the earthquake was considered the only reason of these changes and within 10 to 15 days before the earthquake and 7 days afterward, severe changes were observed. There was a powerful nonlinear context in the TEC data, generated by abnormal solar irradiance during the studied period. It is essential to eliminate the solar activity and geomagnetic activity traces from the ionospheric TEC to elude for representing error in the TEC time series. To recognize if the ionospheric perturbation detected by the AWT is connected to geomagnetic activity, we carried out the XWT for the TEC and AP time series from 1 March to 31 April 2013. It specifies that there is one common high energy region extract within the two time series. The common high energy region related to 17 March 2013. Accordingly, this increment was more probably caused by the geomagnetic storm effects. Within the dynamic range of earthquake, no energetic common point was observed which showed that geomagnetic activity had no role in ionospheric anomalies and another factor, very probably the earthquake was the root of the mentioned anomalies. Therefore, in order to reduce hazard, given TEC time series, the time and frequency of the earthquake could be predicated and defined by evaluating ionospheric parameters. | ||
کلیدواژهها [English] | ||
geomagnetic index, hazard reduction, Ionosphere, Saravan earthquake, Total Electron Content, Wavelet transform | ||
مراجع | ||
]1[ . مقیمی، ابراهیم (1393). دانش مخاطرات (برای زندگی با کیفیت بهتر و محیط پایدارتر)، مؤسسة انتشارات دانشگاه تهران. [2]. Akhoondzadeh, M.,(2011), Comparative study of the earthquake precursors obtained from satellite data. Ph.D. thesis, University of Tehran, Surveying and Geomatics Engineering Department, Remote Sensing Division, pp. 1–157.
[3]. Akhoondzadeh, M., (2012). Anomalous TEC variations associated with the powerful Tohoku earthquake of 11 March 2011. Nat. Hazards Earth Syst. Sci. 12, 1453–1462.
[4]. Akhoondzadeh, M. Thermal and TEC anomalies detection using an intelligent hybrid system around the time of the Saravan, Iran, (Mw = 7.7) earthquake of 16 April 2013. J. Adv. Space Res, (2014), http://dx.doi.org/10.1016/j.asr.2013.12.017
[5]. Jin, S., Han, L., and Cho, J.,(2011), Lower atmospheric anomalies following the 2008 Wenchuan Earthquake observed by GPS measurements, J. Atmos. Sol.-Terr. Phys., 73, 810–814, doi:10.1016/j.jastp.2011.01.023.
[6]. Kon, S., Nishihashi, M., and Hattori, K.,(2011), Ionospheric anomalies possibly associated with M_6.0 earthquakes in the Japan area during 1998–2010: Case studies and statistical study, J. Asian Earth Sci., 41, 410-420, doi:10.1016/j.jseaes.2010.10.005.
[7]. Kuo, C., Huba, J., Joyce, G., and Lee, L.,(2011), Ionosphere plasma bubbles and density variations induced by pre-earthquake rock currents and associated surface charges, J. Geophys. Res, 116, A10317, doi:10.1029/2011JA016628.
[8]. Leonard, R. and Barnes Jr., R.,(1965), Observations of ionospheric disturbances following the Alaska earthquake, J. Geophys. Res., 70, 1250–1253, doi:10.1029/JZ070i005p01250.
[9]. Liu, J., Chen, Y., Pulinets, S., Tsai, Y., and Chuo, Y.,(2000), Seismo-ionospheric signatures prior to M_6.0 Taiwan earthquakes, Geophys. Res. Lett., 27, 3113–3116, doi:10.1029/2000GL011395.
[10]. Liu, J., Chen, Y., Chuo, Y., and Tsai, H.,(2001), Variations of ionospheric total electron content during the Chi-Chi Earthquake, Geophys. Res. Lett., 28, 1383–1386, doi:10.1029/2000GL012511.
[11]. Liu, J., Chen, Y., Chen, C., Liu, C., Chen, C., Nishihashi, M., Li, J., Xia, Y., Oyama, K., and Hattori, K.,(2009), Seismoionospheric GPS total electron content anomalies observed before the 12 May 2008 Mw7. 9 Wenchuan earthquake, J. Geophys. Res., 114, A04320, doi:10.1029/2008JA013698.
[12]. Li, M. and Parrot, M.,(2013), Statistical analysis of an ionospheric parameter as a base for earthquake prediction, J. Geophys. Res., 118, 3731–3739, doi:10.1002/jgra.50313.
[13]. Pisa, D., Parrot, M., and Santolík, O.,(2011), Ionospheric density variations recorded before the 2010 Mw 8.8 earthquake in Chile, J. Geophys. Res., 116, A08309, doi:10.1029/2011ja016611.
[14]. Zhao, B., Wang, M., Yu, T., Wan, W., Lei, J., Liu, L., and Ning, B.,( 2008), Is an unusual large enhancement of ionospheric electron density linked with the 2008 great Wenchuan earthquake?, J. Geophys. Res., 113, A11304, doi:10.1029/2008JA013613.
[15]. Rishbeth, H., Kohl, H., and Barclay, W.(1996), A history of ionospheric physics and radio communications,in: Modern Ionospheric Science, pp. 4–31.
[16]. Baumjohann, W. and Treumann, R. A.: Basic Space Plasma Physics, Imperial College Press, 57 Shelton Street, Covert Garden London WC2H9HE, 1997.
[17]. McNamara, L. F.,(1999) ,The Ionosphere, Communications, Surveillance, and Direction Finding,Krieger publishing company.
[18]. Habarulema, J. B., McKinnell, L.-A., and Opperman, B. D. L.,(2010), TEC measurements and modelling over Southern Africa during magnetic storms ; a comparative analysis, Journal of Atmospheric and Solar Terrestrial Physics, 72(5-6), 509–520.
[19]. Kelley, M. C. ,(2009), The Earth's Ionosphere: Plasma Physics and Electrodynamics (2nd ed.). United States of America: Academic Press.
[20]. Hargreaves, J. K. ,(1992),The Solar-Terrestrial Environment: an introduction to geospace - the science of the terrestrial upper atmosphere, ionosphere and magnetosphere. (A. J. Dessler, J. T. Houghton, & M. J. Rycroft, Eds.) Cambridge: Cambridge University Press .
[21]. Skone, S. ,(1998), Wide area ionosphere grid modelling in the auroral region. PhD Thesis, University of Calgary, Department of Geomatics Engineering, Calgary, Alberta, Canada.
[22]. Grinsted, A., Moore, J., and Jevrejeva, S.,(2004), Application of the cross wavelet transform and wavelet coherence to geophysical time series,Nonlinear Proc. Geoph., 11, 561–566.
[23]. He L. M., L. X. Wu, A. De Santis, S. J. Liu and Y. Yang ,(2014), Is there a one-to-one correspondence between ionospheric anomalies and large earthquakes along Longmenshan faults?, Annales Geophysicae, 32, 187-196. [24]. عبدی،ن.،(1390)،مدلسازی یونسفر بصورت منطقهای در ایران با استفاده از داده های شبکه، طرح پژوهشی سازمان نقشه برداری IPGN. | ||
آمار تعداد مشاهده مقاله: 3,025 تعداد دریافت فایل اصل مقاله: 1,338 |