تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,500 |
تعداد مشاهده مقاله | 124,086,948 |
تعداد دریافت فایل اصل مقاله | 97,190,135 |
تخصیص بهینة آب با استفاده از تئوریبازیهای همکارانه مطالعة موردی: حوضة آبریز زایندهرود | ||
محیط شناسی | ||
مقاله 4، دوره 40، شماره 4، دی 1393، صفحه 875-889 اصل مقاله (1.27 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jes.2014.53004 | ||
نویسندگان | ||
ندا اکبری1؛ محمد حسین نیک سخن* 2؛ مجتبی اردستانی3 | ||
1کارشناس ارشد مهندسی محیطزیست، دانشکدة محیطزیست، دانشگاه تهران | ||
2استادیار گروه مهندسی محیطزیست، دانشکدة محیط زیست، دانشگاه تهران | ||
3دانشیار گروه مهندسی محیطزیست، دانشکدة محیطزیست، دانشگاه تهران | ||
چکیده | ||
پیامدهای اجتنابناپذیر سیر افزایشی تقاضای آب و کاهش منابع، موجب اعمال سیاستهای مختلف مدیریتی به منظور رسیدن به بهینهترین میزان تخصیص آب شده است. محیطزیست بهمنزلة یکی از عناصر اصلی نیازمند آب، همواره پذیرای خسارات ناشی از تخصیصنیافتن منابع آبی بوده است. هدف از این پژوهش، بررسی و انتخاب سیاستهای پایدار تخصیص آب به ذینفعان مختلف است به طوری که آب با کیفیت و میزان مناسب برای ادامة حیات پیکرة آبی در دسترس باشد و اهداف اقتصادی هر یک از ذینفعان نیز تأمین شود و بین ذینفعان و محیطزیست (پیکرۀ آبی) توافق به وجود آید. بدین منظور، محیطزیست بهمنزلۀ آببر مستقل در مدل بهینهسازی الگوریتم ژنتیک و بازیکن مستقل در بازیهای همکارانه لحاظ شده است. در این مطالعه، حوضة آبریز زایندهرود و باتلاق گاوخونی بهمنزلۀ منابع ارزشمند اکولوژیک و آبی کشور که تأمینکنندۀ نیازهای آبی مانند شرب، صنعت و کشاورزیاند، انتخاب شدهاند. هدف از این تحقیق تأمین همزمان بیشترین بهرهوری اقتصادی و برقراری حداقل شرایط مطلوب تأمین آب برای تالاب است. تخصیصی که تأمین حداقل نیاز آبی تالاب برابر 140 میلیون متر مکعب در سال در آن لحاظ شود، ایدهآلترین رویکرد است. با وجود این، در نتیجۀ اعمال سناریوهای مختلف با متدولوژی پیشنهادی این تحقیق، سناریویی که حداکثر نیاز ذینفعان را تأمین کند، برتر از سایر رویکردهاست، به صورتی که 3/87 درصد نیاز آبی تالاب برای حفظ شرایط مطلوب آن تأمین میشود. از طرف دیگر، با تخصیص آب به سایر ذینفعان، سود تخصیصی به بخشهای کشاورزی، صنعت و محیطزیست در این رویکرد بیشترین میزان خود را دارد و به ترتیب برابر با 38/2057، 55/622 و 208 میلیون دلار در 10 سال است. | ||
کلیدواژهها | ||
بهینهسازی؛ تئوریبازیها؛ تخصیص؛ حقابة محیطزیست؛ زایندهرود | ||
عنوان مقاله [English] | ||
Optimization of Water Allocation using Cooperative Game Theory Case Study: Zayandehrud Basin | ||
نویسندگان [English] | ||
Neda Akbari1؛ Mohammad Hossein Niksokhan2؛ Mojtaba Ardestani3 | ||
1Master of Science, Department of Environmnetal Engineering, Faculty of Environment, University of Tehran | ||
2Assistant Professor, Department of Environmnetal Engineering, Faculty of Environment, University of Tehran, | ||
3Associate Professor, Department of Environmnetal Engineering, Faculty of Environment, University of Tehran, | ||
چکیده [English] | ||
Introduction: When there is no determined value for water (as a public asset) by its trustees and beneficiaries and its allocation method is more dependent on the requirements of water consumers than comparing water affairs benefits with its real value, decision making on which interested group, when and to what extent can use water is a game. This study is aimed to determine sustainable policies for water allocation to interested groups such that high quality sufficient water is available to survive water bodies and economic purposes of interested groups are satisfied by sustainability agreement with the environment. For this, the environment is recognized as an independent water user in optimization model and as an independent player in the game theory. Thereby, Zayandehrud basin has been studied as a case study. Materials and Methods: In this study was first dealt with optimizing the allocation of water output from the reservoir to consumptions including drinking, agriculture, industry and environment by means of genetic algorithm. To get the most desirable possible state of water provision for consumptions, 4 approaches have been considered, as described briefly below. The first includes providing biological current for the river which is in an equilibrium using Tenant (Montana) method and available data (providing 2.06 (MCM) for each month in the cold season and 6.18 (MCM) for each month in the warm season). The second has been formulated by providing minimum water requirement for lagoon survival and considering protection and provision of minimum survival requirements for this valuable water ecosystem in the area. Continuity of natural life in the swamp depends completely on water depth. The lowest possible depth for vital activities is in about depth of 15cm. This depth can be achieved by importing 75 MCM per year water to the swamp. Benthos is hardly survived in this depth. The third includes providing desirable quality for the lagoon based on TDS such that the water requirements for TDS dilution have been assumed as a biological requirement. In the fourth, provision of minimum water requirement for the lagoon is considered and with regard to the studies on Gavkhoony swamp, desirable performance occurs with provision of 140MCM per year water. This amount provides depth of 30cm for the swamp. Then, having estimated benefits of each beneficiary, their interactions in the basin have economically investigated by cooperative games. The percentages of requirement provision for beneficiaries and annual water allocations have presented in Table 1 for different approaches. The benefits of each beneficiary and the results of cooperative game have been provided in Figure 1. Tabel - Gross profit of water user in each approach 4th approache 3rd approache 2nd approache 1st approache User Benefit ($) Water use (MCM) Benefit ($) Water use (MCM) Benefit ($) Water use (MCM) Benefit ($) Water use (MCM) 2057.38 8756.8 2032.89 8652.6 2157.34 9182.32 2057.89 8759 Agriculture 622.55 924.3 622.09 923.61 622.49 924.21 622.47 924.17 Industry 208 1747.2 124.4 1044.98 106.03 890.71 117.16 985.05 Environment 2nd Approach 1st Approach 4th Approach 3rd Approach Figure 1. Results of cooperative games in different approaches Discussion and Conclusion: With regard to data from the studied area, in spite of various managerial plans to increase water provision for the basin, it no longer satisfies the requirements of water consumers. Specially, it is the case in the environmental sector where because of ignorance and devoting water allocation priorities in the recent years, it has been deficient in its life and is completely dependent on seasonal currents and rainfalls. According to the designed approaches in the environmental sector of this study, more than 85% of its requirements can be eliminated in allocations. With water provision approach for environment sector, 3-8% of agricultural and 8% of industrial requirements are deficient. From environmental requirement provision point of view which has been distinctively defined in every approach, the model has shown the best performance in the first approach such that 100% of environmental requirements are satisfied. Of course, considering that this approach has accounted minimum requirements for the environment, minimum deficiencies in agricultural and industrial allocations have been observed. Maximum water requirement has been considered in the fourth approach in which optimization model can allocate 87% of environmental requirements. The fourth approach, from water allocation to the environment view point, is the best approach because of water allocation to the environment with regard to water content as well as positioning the lagoon in a desirable state for survival. It can be concluded from economic analyses of model approaches that the industry has the same benefit in all approaches despite 8% change in water allocation respect to unfair allocation and low or high environmental utility in different approaches has no influence on economic performance of the industry. The second approach has the most benefit in agricultural sector and it has the best performance in environmental sector because of the most desirable state for the river and lagoon survival. Economic analysis shows that agricultural sector has more benefit in second approach than other states. From model allocations, it can be said monthly allocation and distribution model has impressive effect in agricultural sector. With constant optimization procedure in allocations, agricultural sector incurs severe pressures but considering allocated water and benefits in the agricultural sector, first, second and fourth approaches have little differences because of monthly water distribution procedure in firth and third approaches. From game theory, benefits from player cooperation in agricultural and environmental sector have been more than no cooperation. The industry earns the same benefit from both states, except for third approach. Proportional Nucleolus game has maximum benefit in agricultural sector, except in the first approach. Weak Nucleolus has shown better performance in benefit calculation in the environmental sector, except for fourth approach. Therefore, there is no specified procedure for games but because of more benefit from cooperation in agricultural and environmental sectors than no cooperation both sectors will get more benefits from cooperation beside water requirement provision. Best benefit allocation has respectively occurred in fourth, second, third and first approaches. Finally, it is clear that considering the environment as a beneficiary of basins and planning for water resource management makes always more benefit the system, although less water allocation to consumers makes less benefit. Because of no profit in environment sector and no protest except in critical conditions, there is ignorance in this sector while water ecosystems are most valuable resources that their economic value estimation is complicated and far from reality but with these economic methods it is seen that the aggregate benefit and profit is in the environment protection and survival. | ||
کلیدواژهها [English] | ||
Optimization, Game theory, Allocation, Environmental flow, Zayandehrud River | ||
مراجع | ||
سلطانی، س. 1388. تعیین حداقل آب مورد نیاز (حقابه) باتلاق گاوخونی، مطالعات مشترک دانشگاه صنعتی اصفهان و محیطزیست استان اصفهان، چاپنشده. کریمی، ا. نیکو، م. کراچیان، ر. شیرنگی، ا. 1391. ارزیابی قابلیت تأمین بلندمدت آب در حوضة آبریز زایندهرود تحت تأثیر طرحهای انتقال آب با بهینهسازی چنددورهای، پژوهش آب ایران، سال ششم، شمارة 11. مهندسین مشاور یکم. 1382. مطالعات بهنگامسازی طرح جامع آب کشور- حوضة گاوخونی. نیکسخن، م. کراچیان، ر. 1387. مدیریت کیفیت آب رودخانة مبتنی بر مدل تصمیمگیری مجوز تخلیۀ بار آلودگی، رسالة دکتری دانشکدة فنی، دانشگاه تهران. Abrishamchi, A., Danesh-Yazdi, M., Tajrish, M. 2011. Conflict Resolution of Water Resources Allocation Using Game Theoretic Approach: the case of orumieh river basin in Iran, AWRA Summer Specialty Conference
Ardakanian, R. 2005. Optimization the coordination of hydro and thermal plant: the HTCOM model. The International Journal on Hydropower & Dams.
Coad, B.W. 2010. Xeric Freshwaters and Endorheic (Closed) Basins. Freshwater Ecoregions of the Words (FWOW) Site.
Dinar, A., and Wolf, A. T. 1994. International Markets for Water and the Potential for Regional Cooperation: Economic and Political Perspectives in the Western Middle East, Economic Development and Cultural Change.
Dufournaud, C. 1982. On the Mutually Beneficial Cooperative Scheme: Dynamic Change in the Payoff Matrix of International River Basin Schemes, Water Resources Research.
Ganji, A., Karamouz, M. and Khalili, D. 2007. Development of stochastic dynamic Nash game model for reservoir operation.I. The symmetric stochastic model with perfect information, Advances in Water Resources
Gohari, A., Eslamian, S., Abedi, J., Massah, A., Wang, D., and Madani, K. 2013. Climate change impacts on crop production in Iran's Zayandeh-Rud River Basin. Science of The Total Environment.
Goldberg, D. E. 1989. A comparative Analysis of selection Scheme Used in Genetic Algorithms, Foundation of Genetic Algorithms, morgan Kaufman, San Mateo, Calif.
Haab, T. C., and McConnell, K. E. 2002. Valuing Environmental and Natural Resources. Edward Elgar Publishing Limited, Cheltenham, UK.
Lejano, R. P., and Davos, C. A. 1995. Cost Allocation of Multiagency Water Resource Projects: Game-Theoretic Approaches and Case Study, Water Resources Research.
Madani, K. 2010. Game theory and water resources, Journal of Hydrology.
Madani, K. 2011. Hydropower licensing and climate change: Insights from cooperative game theory, Advances in Water Resources.
Mahboubi Sufiani, N. 1996. Liminological study and environmental balance of interior water of the Gaw Khuni swamp, Esfahan Environment Authority.
Mansoori, J. 1997. Ramsar Report for Gavkhouni Lake and Marshes of the Lower Zaindeh Rud. The Ramsar Sites Database.
Michalewics, Z. 1992. Genetic Algorithms + Data Structures=Evolution Programs, Springer.
Moeinian, M. T. 2000. The impact of drought on ecological factors of the Gaw-Khuni swamp, Esfahan Environment Authority.
Morid, S., and Massah, A. R. 2004. Modeling Zayandeh Rud basin under climate change. Proceeding of Conference on Hydrology: Science and practice for the 21st century London, UK.
Nikouei, A., Zibai, M., Ward, F. 2012. Incentives to adopt irrigation water saving measures for wetlands preservation: An integrated basin scale analysis, Journal of Hydrology.
Roe, T., and Diao, X. 1997. The Strategic Interdependence of a Shared Water Aquifer: A General Equilibrium Analysis, Dordecht: Kluwer Academic Publishers.
Rogers, P. 1969. A Game Theory Approach to the Problems of International River Basins, Water Resources Research
Salemi, H. R., and Murray-Rust, H. 2002. Water Supply and Demand Forecasting in the Zayandeh Rud basin. Iran. IAERI-IWMI Research Reports.
Vakil, H. A. 2006. Gavkhooni Swamp to Turn into an International Tourism Destination. Skyscrapercity: Tourism Infrastructure, Development and News.
Wang, L., Fang, L., Hipel, K.W. 2008. Basin-wide Cooperative Resources Allocation, European Journal of Operational Research.
Wardlaw, R., and Sharif, M. 1999. Evaluation of Genetic Algorithms for Optimal Reservoir System Operation, Journal of Water Resources Planning and Management. | ||
آمار تعداد مشاهده مقاله: 3,447 تعداد دریافت فایل اصل مقاله: 1,770 |