
Impact of methyl jasmonate on vegetative parameters and fruit yield of melon cv. ‘Semsuri’ | ||
به زراعی کشاورزی | ||
Article 9, Volume 17, Issue 3, October 2015, Pages 671-682 PDF (914.63 K) | ||
Document Type: Research Paper | ||
DOI: 10.22059/jci.2015.54378 | ||
Authors | ||
mehdi nazarian1; Mohammad Javad Arvin2; shima hasanzadehfard* 1 | ||
1Graduate Student, Department of Horticultural Sciences, College of Agriculture, Kerman Bahonar University, Kerman, Iran | ||
2Professor, Department of Horticultural Sciences, College of Agriculture, Kerman Bahonar University, Kerman, Iran | ||
Abstract | ||
To investigate the effects of methyl jasmonate growth regulators on growth characteristics, fruit number and fruit yield of ‘Semsuri’ melon, an experiment at the field of Shahid Bahonar University was conducted in summer 2012. Melon (cv. ‘Semsuri’) is widely cultivated in Iran and therefore increasing the fruit yield and quality of this cultivar is necessary. Some growth regulators including Methyl Jasmonate (MJ) may improve growth and development of plants when applied at appropriate low concentrations. Thus, a complete random block experiment at the research field of Shahid Bahonar University was conducted to study the impact of 0, 2.5 and 5µM of MJ applied as seed soaking, foliar spray at 6-7 leaf stages, after fruit set and in combination with treatments on growth and fruit yield of ‘Semsuri’ melon. To promote growth and fruit yield, two times application of MJ is required. MJ reduced leaf ion leakage and increased chlorophyll index, relative water content, flesh thickness, plant fresh weight and fruit yield. Moreover, MJ significantly reduced fruit set that reduces fruit hand thinning. Most effective level of MJ was 5 µM applied at 3 stages. Compared with control, 5µM MJ reduced leaf ion leakage (42 percent), and increased chlorophyll index (45 percent), relative water content (32 percent), flesh thickness (33 percent), plant fresh weight (38 percent), root fresh weight (40 percent) and fruit yield (24 percent with two melons per plant and 19 percent with three fruits per plant). | ||
Keywords | ||
Growth parameters; Jasmonate; melon; Spray; yield | ||
References | ||
10. Capitani F, Biondi S, Falasca GV, Ziosi V, Balestrazzi A, Carbonera D, Torrigiani P and Altamura M (2005) Methyle jasmonate disrupts shoot formation in tobacco thin cell layers by over-inducing mitotic activity and cell expansion. Planta. 220(4): 507-519. 11. Carvalho R, Piotto FA and Schmidt D (2011) Seed priming with hormones does not alleviate induced oxidative stress in maize seedlings subjected to salt stress. Scientia Horticulturae. 68: 598-602. 12. Creelman RA and Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annual Review of Plant Physiology. 48: 355-381. 13. Faostat (2011) Agriculture/Production/Crops/Yield. Retrieved from. http://fastat. Fao.org. 14. Garcia-Mata C and Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiology. 126(3): 1196-1204. 15. Horton RF (1991) Methyl Jasmonate and transpiration in barley. Plant Physiology. 96: 1376-1378. 16. Kanoun-Boule M, Vicente JAF, Nabais C, Prasad MNV and Freitas H (2009) Ecophysiological tolerance of duckweeds exposed to copper. Aquatic Toxicology. 91: 1-9. 17. Karaman S, Ozturk B, Genc N and Celik SM (2013) Effect of preharvest application of Methyl Jasmonate on fruit quality of plum (Prunus Salicina cv. Fortune) at harvest and during cold storage. Food Processing and Preservation. 37(6): 1049-1059. 18. Kazemi M (2013) Effect of foliar application with Potassium Nitrate and Methyl Jasmonate on growth and fruit quality of Cucumber. Bulletin of Environment Pharmacology and Life Sciences. 2(11): 07-10. 19. Koda Y (1992) The role of Jasmonic acid and related compounds in the regulation of plant development. International Review of Cytology. 135: 155-199. 20. Korkmaz A (2005) Inclusion of acetyl salicylic acid and Methyl Jasmonate into the priming solution improves low temprerature germination and emergence of sweet pepper. Scientia Horticulturae. 40: 197-200. 21. Kuepper G, Bachmann J and Thomas R (2003) Speciality muskmelons: Organic Production. In: NCAT, Agricultural Specialists. pp. 18-21. 22. Kumar SP (2011) Effect of different mulches and irrigation method on root growth nutrient uptake, water-use efficiency and yield of strawberry. Scientia Horticulturae. 127: 318-324. 23. Lyons JM, Mcglasson WB and Pratt HK (1962) Ethylene production, respiration and internal gas concentrations in cantaloupe fruits at various stages of maturity. Plant Physiology. 37: 31-36. 24. Maciejewska B and Kopcewicz J (2002) Inhibitory effects of Methyl Jasmonate on flowering and elongation growth in (pharbitis nil). Plant Growth Regulation. 21: 216-223. 25. Maciejewska W and Krupa Z (2002) Jasmonic acid and heavy metals in Arabidopsis plant a similar physiological response to both stressors. Plant Physiology. 159: 509-515. 26. Ozturk B, Altuntas E, Yildiz K, Ozkan Y and Saracoglu O (2013) Effect of Metyl Jasmonate treatment on the bioactive compounds and physicochemical quality of 'Fuji' Apples. Ciencia Investigation Agraria. 40(1): 201-211.
28. Rezai S, Orojloo M, Bidabadi SS and Soleimanzadeh M (2013) Possible role of Methyl Jasmonate in protection to NaCl – induced salt stress in pepper cv. ‘Sabz Hashemi’. International Journal of Agriculture and Crop Sciences. 6(17): 1235-1238. 29. Schaller F, Schaller A and Stintizi A (2005) Biosynthesis and metabolism of Jasmonates. Plant Growth Regulation. 23: 179-199. 30. Soad A and Sheteawi A (2007) Improving growth and yield of salt-stressed soybean by exogenous application of jasmonic acid and ascorbin. International Journal of Agriculture. 3: 473-478. 31. Stoynova-Bakalova E, Nikolova M and Maksymiec W (2009) Effects of Cu2+, cytokinins and jasmonate on content of two flavonols identified in Zucchini cotyledons. Acta Biologica Cracoviensia Series Botanica 51(2): 77-83. 32. Wang SY (1999) Methyl Jasmonate reduces water stress in strawberry. Plant Growth Regulation. 18: 127-134. 33. Yamasaki S and Dillenburg LR (1999) Measurements of leaf relative water content in Arucaria angustifolia. Revista Brasileira de Fisiologia Vegetal. 11(2): 69-75.
| ||
Statistics Article View: 2,289 PDF Download: 1,242 |