![سامانه نشر مجلات علمی دانشگاه تهران](./data/logo.png)
تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,037 |
تعداد مشاهده مقاله | 125,522,109 |
تعداد دریافت فایل اصل مقاله | 98,781,667 |
Amount of Mn and Zn in herbaceous plants growing on industrial area of steel production companies in southeast of Ahvaz, Iran | ||
Progress in Biological Sciences | ||
مقاله 4، دوره 5، شماره 2، مهر 2015، صفحه 181-193 اصل مقاله (560.04 K) | ||
نوع مقاله: Original Research Papers | ||
شناسه دیجیتال (DOI): 10.22059/pbs.2015.55528 | ||
نویسندگان | ||
Parzhak Zoufan* 1؛ Atefeh Saadatkhah1؛ Saadat Rastegarzadeh2 | ||
1Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Postal Code 6135743337, Ahvaz, Iran | ||
2Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Postal Code 6135743337, Ahvaz, Iran | ||
چکیده | ||
In the present study, a field study was performed on some herbaceous plants growing in the southeast of Ahvaz, where some metal producing industries are active. The aim of this study was to investigate and compare manganese (Mn) and zinc (Zn) accumulation in seven dominant herbaceous plants in this area. Plant samples were collected randomly. Associated soils were sampled from the same sites next to the root of individual plants. The metals concentration in the soil and the plant samples were determined by flame atomic absorption spectrometry. Highest Mn and Zn concentrations were observed in the shoots of Halocnemum strobilaceum, Taraxacum kotschyi, Malva parviflora, and Solanum nigrum. Moreover, elevated accumulation of Mn was found in the roots of Lolium temulentum, and Convolvulus arvensis. Regarding to defined standards for phytoremediation purposes, studied plants could not be classified as hyperaccumulators, at least under field conditions. Nevertheless, based on accounted bioconcentration and translocation factors, it seems that the majority of investigated plants have the metals accumulation capacity in shoot parts. | ||
کلیدواژهها | ||
bioconcentration؛ metal accumulation؛ soil concentration؛ Translocation Factor | ||
مراجع | ||
1. Hansch, R. and Mendel, R.R. (2009) Physiological function of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol., 12, 259-266. 2. Zornoza, P., Sanchez-Pardo, B. and Carpena, R.O. (2010) Interaction and accumlation of manganese and cadmium in the manganese accumulator Lupinus albus. J. Plant Physiol., 167, 1027-1032. 3. La Rocca, N., Andreoli, C., Giacometti, G.M., Rasico, N. and Moro, L. (2009) Responses of the Antarctic microalga Koliella antartica (Trebouxiophyceae, Chlorophyta) to cadmium contamination. Photosynthetica, 47, 471-479. 4. Fritsch, C., Giraudoux, P., Coeurdassier, M., Douay, F., Raoul, F., Pruvot, C., Waterlot, C., de Vaufleury, A. and Scheifler, R. (2010) Spatial distribution of metals in smelter impacted soils of woody habitats: influence of landscape and soil properties and risk for wildlife. Chemosphere, 81, 141-155. 5. Rascio, N. and Navari-Izzo, F. (2011) Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci., 180, 169-181. 6. Baker, A.J.M. (1981) Accumulators and excluders: strategies in the response of plants to heavy metals. J. Plant Nutr., 3, 643-654. 7. Baker, A.J.M., McGrath, S.P., Reeves, R.D. and Smith, J.A.C. (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In Terry, N. and Banuelos, G. (eds.), Phytoremediation of contaminated soil and water. Lewis Publishers CRC, Boca Raton, pp.85-107. 8. Sun, Y.B., Zhou, Q.X., Wang, L. and Liu, W.T. (2009) Cadmium tolerance and accumulation characteristics of Bidens pillsa L. as a potential Cd-hyperaccumulator. J. Hazard. Mater., 161, 808-814. 9. Milić, D., Luković J., Ninkov, J., Zeremski-Škoric, T., Zorić, L., Vasin, J. and Milić, S. (2012) Heavy metal content in halophytic plants from inland and maritime saline areas. Cent. Eur. J. Biol., 7, 307-317. 10. Yanqun, Z., Yuan, L., Schvartz, C., Langlade, L. and Fan, L. (2004) Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead–zinc mine area, China. Environ. Int., 30, 567– 576. 11. Boularbah, A., Schwartz, C., Bitton, G., Aboudrar, W., Ouhammou, A. and Morel, J.L. (2006) Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants. Chemosphere, 63, 811-817. 12. Del Rio-Celestino, M., Font, R., Moreno-Rojas, R. and De Haro-Bailon, A. (2006) Uptake of lead and zinc by wild plants growing on contaminated soils. Ind. Crops Prod., 24, 230-237. 13. Barbafieri, M., Dadea, C., Tassi, E., Bretzel, F. and Fanfani, L. (2011) Uptake of heavy metals by native species growing in mining area in Sardinia, Italy: discovering native flora for phytoremediation. Int. J. Phytorem. 13, 985-997. 14. Ghaderian, S.M. and Ghotbi Ravandi, A.A. (2012) Accumulation of copper and other heavy metals by plants growing on Sarcheshmeh copper mining area, Iran. J. Geochem. Explor. 123, 25-32. 15. Martinez-Sanchez, M.J., Garcia-Lorenzo, M.L., Perez-Sirvent, C. and Besh, J. (2012) Trace element accumulation in plants from an aridic area affected by mining activities. J. Geochem. Explor., 123, 8-12. 16. Monterroso, C., Rodríguez, F., Chavez, R., Diez, J., Becerra-Castro, C., Kidd, P.S. and Macías, F. (2014) Heavy metal distribution in mine-soils and plants growing in a Pb/Zn-mining area in NW Spain. Appl. Geochem., 44, 3-11. 17. Frérot, H., Lefèbvre, C., Gruber, W., Collin, C., Dos Santos, A. and Escarre, J. (2006) Specific interactions between local metallicolous plants improve the phytostabilization of mine soils. Plant Soil, 282, 53-65. 18. Zoufan, P., Saadatkhah, A. and Rastegarzadeh S. (2013) Comparison of potentialiality of heavy metals accumulation in the plants surrounding steel industries in the Mahshahr-Bandar Imam road, Ahvaz, Iran. J. Plant Biol., 5, 41-56. (in Persian with an English abstract) 19. Soon, Y.K. and Abboud, S. (1993) Cadmium, Chromium, Lead and Nickel. In Carter, M.R. (ed.), Soil sampling and methods of analysis. Lewis Publishers CRC, Boca Raton, pp. 101-109 20. Lindsay, W.L. and Norvell, W.A. (1978) Development of a DTPA test for zinc, iron, manganese and copper. Soil Sci. Soc. Am. J., 42, 421-428. 21. Kovacs, B., Gyori, Z., Prokisch, J., Loch, J. and Daniel, P. (1996) A study of plant sample preparation and Inductively Coupled Plasma Emission Spectrometry parameters. Commun. Soil Sci. Plan., 27, 1177-1198. 22. Yang, W., Ding, Z., Zhao, F., Wang, Y., Zhang, X., Zhu, Z. and Yang, X. (2015) Comparison of manganese tolerance and accumulation among 24 Salix clones in a hydroponic experiment: Application for phytoremediation. J. Geochem. Explor., 149, 1-7. 23. Karami, N., Clemente, R., Moreno-Jimenez, E., Lepp, N.W. and Beesley, L. (2011) Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryrgrass. J. Hazard. Mater., 191, 41-48. 24. Fischerova, Z., Tlustos, P., Szakkova, J. and Sichorova, K. (2006) A comparison of phytoremediation capability of selected plant species for given trace element. Environ. Pollut., 144, 93-100. 25. Branquinho, C., Serrano, H.C., Pinto, M.J. and Martins-Loucao, M.A. (2007) Revisiting the plant hyperaccumulation criteria to rare plants and earth abundant elements. Environ. Pollut., 146, 437– 443. 26. Whitehead, D.C. (2000) Nurtient elements in grasslands: Soil-plant-animal relationships. CABI Publishing, Wallingford. 27. Cerqueira, B., Covelo, E.F., Andrade, M.L. and Vega, F.A. (2011) Retention and mobility of copper and lead in soils: influence of soil horizon properties. Pedosphere, 21, 603–614. 28. Lago-Vila, M., Arenas-Lago, D., Andrade, L. and Vega, F.A. (2014) Phytoavailable content of metals in soils from copper mine tailings (Touro mine, Galicia, Spain). J. Geochem. Explor., 147, 159-166. 29. Brooks, R.R., Chambers, M.F., Nicks, L.J. and Robinson, R.H. (1998) Phytomining. Trends Plant Sci., 3, 359-362. 30. Bidwell, S.D., Woodrow, I.E., Batianoff, G.N. and Sommer-Knudsen, J. (2002) Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae) from Queensland, Australia. Funct. Plant Biol., 29, 899-905. 31. Min, Y., Boqing, T., Meizhen. T. and Aoyama, I. (2007) Accumulation and uptake of manganese in a hyperaccumulator Phytolacca americana. Miner. Eng., 20, 188-190. 32. Xue, S.G., Chen, Y.X., Reeves, R.D., Baker, A.J.M., Lin, Q. and Fernando, D.R. (2004) Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolacceae). Environ. Pollut., 131, 393-399. 33. Fernàndez, J., Zacchini, M. and Fleck, I. (2012) Photosynthetic and growth responses of Populus clones Eridano and I-214 submitted to elevated Zn concentrations. J. Geochem. Explor., 123, 77- 86. 34. Sarret, G., Saumitou-Laprade, P., Bert, V., Proux, O., Hazemann, J. L., Traverse, A., Marcus, M.A. and Manceau, A. (2002) Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Phisiol., 130, 1815-1826. 35. Lin, W., Xiao, T., Wu, Y., Ao, Z. and Ning, Z. (2012) Hyperaccumulation of zinc by Corydalis davidii in Zn-polluted soils. Chemosphere, 86, 837-842. 36. Oropeza-Garcia, N., Hausler, R., Glaus, M., Vega-Azamar, R., and Romero-Lopez, R. (2014) Transport of heavy metals in materials with diameter analogous to xylem vessels. Int. J. Environ. Res., 8, 123-132. | ||
آمار تعداد مشاهده مقاله: 2,005 تعداد دریافت فایل اصل مقاله: 2,324 |