تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,113,297 |
تعداد دریافت فایل اصل مقاله | 97,217,117 |
تأثیر جنگلکاری های کاج تهران و سرو نقره ای بر باران ربایی در اقلیم نیمه خشک | ||
نشریه جنگل و فرآورده های چوب | ||
مقاله 13، دوره 68، شماره 3، آبان 1394، صفحه 641-653 اصل مقاله (1.66 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jfwp.2015.55595 | ||
نویسندگان | ||
سید محمد معین صادقی1؛ پدرام عطارد* 2 | ||
1دانشجوی کارشناسی ارشد، گروه جنگلداری و اقتصاد جنگل، دانشکدة منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
2دانشیار گروه جنگلداری و اقتصاد جنگل، دانشکدة منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
چکیده | ||
این پژوهش با هدف مقایسة بارانربایی (I) تودههای دستکاشت کاج تهران (Pinuseldarica Medw.) و سرو نقرهای (Cupressus arizonica Green.) در پارک جنگلی چیتگر تهران با اقلیم نیمهخشک انجام شد. میزان بارندگی (GR) با استفاده از 10 بارانسنج دستی در نزدیکترین فضای باز به تودهها اندازهگیری شد. برای اندازهگیری میزان تاجبارش (TF)، تعداد 50 بارانسنج بهطور تصادفی در هر توده نصب شد و اندازهگیریها از شهریور 1391 تا شهریور 1392 انجام شد. از 55 رخداد GR اندازهگیریشده با مجموع عمق 5/262 میلیمتر، مقدار I تجمعی کاج تهران و سرو نقرهای به ترتیب 0/80 میلیمتر (5/30 درصد) و 3/60 میلیمتر (0/23 درصد) و همچنین درصد بارانربایی (I:GR) به ترتیب 8/46 و 8/37 درصد بهدست آمد. همبستگیهای مثبت معناداری بین I و GR در سطح 95 درصد برای کاج تهران (663/0 r = ؛811/0 + GR135/0I = ) و سرو نقرهای (757/0 r = ؛620/0 + GR100/0I = ) مشاهده شد. نتایج نشان داد درصد I:GR دو گونه فقط در کلاسة GRهایی با مقدار کم (0/5-1/0 میلیمتر) اختلاف معناداری باهم دارند (01/0P < ). نتایج این پژوهش نشان میدهد که گونة سرو نقرهای مناسبتر از کاج تهران برای جنگلکاری در این اقلیم است، زیرا مقدار آب رسیده به کف جنگل در تودههای سرو نقرهای بیشتر است. | ||
کلیدواژهها | ||
بارانسنج دستی؛ پارک جنگلی چیتگر؛ تودة دستکاشت؛ مقدار باران | ||
عنوان مقاله [English] | ||
Afforestations Impact of Pinus eldarica and Cupressus arizonica on Rainfall Interception in a Semiarid Climate Zone | ||
نویسندگان [English] | ||
Seyed Mohammad Moein Sadeghi1؛ Pedram Attarod2 | ||
1M.Sc. Student of Forestry and Forest Economic, Faculty of Natural Resources, University of Tehran, Karaj, I.R. Iran | ||
2Associate Professor, Forestry and Forest Economic Department, Faculty of Natural Resources, University of Tehran, Karaj, I.R. Iran | ||
چکیده [English] | ||
The main goal of this study was to compare of rainfall interception (I) by Pinus eldarica and Cupressus arizonica plantations afforested in the Chitgar Forest Park in a semiarid climate zone of Iran. From the September 2012 to September 2013, gross rainfall (GR) and throughfall (TF) were collected through 10 and 50 rain-gauges, respectively. I was calculated as the difference between GR and TF. During the measurement period, fifty five rainfall events with the cumulative value of 262.5 mm were recorded. Over the study period, I was calculated 80.0 mm (30.5 %), and 60.3 mm (23.0 %) for P. eldarica and C. arizonica, respectively. The percents of the interception (I:GR)% were estimated 46.8% and 37.8%, respectively. Significant positive correlations were observed between I and GR by P. eldarica (I = 0.135GR + 0.811; r = 0.663), and C. arizonica (I = 0.100GR + 0.620; r = 0.757) afforestations (P < 0.05). T-test suggested that there were significant differences between the (I:GR)% values at the small and very small storms classes (0.1-5.0 mm) between P. eldarica and C. arizonica (P < 0.01). The greater interception loss by P. eldarica proposed that in this climate zone, it is preferable to plant C. arizonic relative to P. eldarica trees. | ||
کلیدواژهها [English] | ||
Afforested stand, Chitgar forest park, Manual rain-gauge, Rainfall amount | ||
مراجع | ||
[1]. Sadeghi, S.M.M., Attarod, P., Van Sta, J.T., Pypker, T.G., and Dunkerley, D. (2015). Efficiency of the reformulated Gash’s interception model in semiarid afforestations. Agricultural and Forest Meteorology, 201: 76-85.
[2]. Sadeghi, S.M.M., Attarod, P., Pypker, T.G., and Dunkerley, D. (2015). Is canopy interception increased in semiarid tree plantations? Evidence from a field investigation in Tehran, Iran. Turkish Journal of Agriculture and Forestry, 38: 792-806.
[3]. Sadeghi, H., Kahavrinezhad, R., Fahimi, H., Falahiyan, F.A., and Imani Pour, V. (2007). The effect of NACL salinity on growth and mineral uptake in Pinus eldarica M. Journal of Horticulture and Technology, 8(3): 199-212.
[4]. Sardabi, H. (1998). Eucalypt and pine species trials on the Caspian littoral and lowlands of Iran. Research Institute of forests and Rangelands (RIFRI), Tehran, I.R. Iran. Technical Publication No: 193.
[5]. Shayanmehr, F., Jalali, S. GH., Ghanati, F., and Kartoolinejad, D. (2008). Discrimination of Pinus eldarica MEDW. and its two new species by epicuticular wax, lignin content, electrophoretic isozyme and activity of peroxidase. Feddes Repertorium, 119(7-8): 644-654.
[6]. Sadati, S.E., Mostafanejhad, S.R., and Mokhtari, J. (2007). An investigation on adaptability of Cupressus arizonica in a 10- years period in Caspian Sea plain (Chamestan). Pajouhesh and Sazandegi, 77: 76-83.
[7]. Gilman, E.F., and Watson, D.G. (1993). Cupressus arizonica var. arizonica, Fact Sheet, ST-222, 3 pp.
[8]. Chang, M. (2006). Forest Hydrology: An Introduction to Water and Forests, second ed. Taylor and Francis, Boca Raton, FL. p. 488.
[9]. Eltahir, E.A.B., and Bras, R.L. (1993). A description of rainfall interception over a large area. Journal of Climate, 6: 1002-1008.
[10]. Shachnovich, Y., Berliner, P.R., and Bar, P. (2008). Rainfall interception and spatial distribution of throughfall in a pine forest planted in an arid zone. Journal of Hydrology, 349: 168-177.
[11]. Rutter, A.J., Kershaw, K.A., Robins, P.C., and Monton, A.J. (1971). A predictive model of rainfall intercepttion forests, 1. Derivation of the model from observations in a plantation of corsican pine. Agricultural Meteorology, 9: 367-384.
[12]. Gash, J.H.C. (1979). An analytical model of rainfall interception by forest. Quarterly Journal of the Royal Meteorological Society, 105: 43-55.
[13]. Liu, S. (1998). Estimation of rainfall storage capacity in the canopies of cypress wetlands and slash pine uplands in North-Central Florida.Journal of Hydrology, 207: 32-41.
[14[ Gash, J.H.C., and Morton, A.J. (1978). An application of the Rutter model to the estimation of the interception loss from thetford forest. Journal of Hydrology, 38(1-2): 49-58.
[15]. Savenije, H.H.G. (2004). The importance of interception and why we should delete the term evapotranspiration from our vocabulary. Hydrological Processes, 18: 1507-1511.
[16]. Roberts, M.C., and Klingeman, P.C. (1970). The influence of land form and precipitation parameters on flood hydrograph. Journal of Hydrology, 11: 393-411.
[17]. Walsh, R.P.D., and Voigt, P.J. (1977). Vegetation litter: an underestimated variable in hydrology and geomorphology. Journal of Biogeography, 4: 253-274.
[18]. Asadian, Y. (2007). Rainfall interception in an urban environment. M.Sc Thesis the University of British Columbia, 84 p.
[19]. Ratt, K.J., Draaijers, G.P.J., Schaap, M.G., Tietema, A., and Verstraten, J.M. (1991). Spatial variability of throughfall water and chemistry and forest floor water content in a rangeland. Journal of Range Management, 44(3): 286-288.
[20]. Schume, H., Jos, G., and Katzensteiner, K. (2003). Spatio-temporal analysis of the soil water content in a mixed Norway Spruce (Picea abies L.)-European beech (Fagus sylvatica L.) stand. Geoderma, 112: 273-287.
[21]. Mottonen, M., Jarvinen, E., Hokkanen, T.J., Kuuluvanien, T., and Ohtonen, T. (1999). Spatial distribution of soil ergosterol in the organic layer of a mature Scot Pine (Pinus sylvestris L.) forest. Soil Biology and Biogeochemistry, 3: 503-516.
[22]. Bottcher, K., Strebel, O., and Lauer, S. (1997). Spatial variability of groundwater solute concentrations at the water table under a pine stand on sandy soil with deep ground water. Zeitschrift fur Pflanzenenahrung und Bodenkunde, 160: 67-72.
[23]. Schellekens, J. (2000). The Interception and Runoff Generating Processes in the Bisley Catchment, Luquillo Experimental Forest, Puerto Rico. Physicsand Chemistryof theEarth, 25 (7-8): 659-664.
[24]. Gomez-Peralta, D., Oberbauer, S.F., McClain, M.E., and Philippi, T.E. (2008). Rainfall and cloud-water interception in tropical montane forests in the eastern Andes of Central Peru. Forest Ecology and Management, 255: 1315-1325.
[25]. Zimmermann, B., Zimmermann A., and Van Breugel, M. (2013). Variation in rainfall interception along a forest succession gradient. Geophysical Research, 15: 4156.
[26]. Motahari, M., Attarod, P., Etemaad, and V., Shirvany, A. (2012). Rainfall size and interception of a Pinus eldarica afforestation in a semi-arid climate zone (Chitgar Forest Park). Journal of Forest and Wood Products, 65(1): 82-95.
[27]. Van Dijk, A.I.J.M., and Bruijnzeel, L.A. (2001). Modeling rainfall interception by vegetation of variable density using an adapted analytical model. Part 2. Model validation for a tropical upland mixed cropping system. Journal of Hydrology, 247: 239-262.
[28]. Pypker, T.G., Bond, B.J., Link, T.E., Marks, D., and Unsworth M.H. (2005). The importance of canopy structure in controlling the interception loss of rainfall: examples from a young and an old-grown Douglas-fir forest. Agricultural and Forest Meteorology, 130: 113-129.
[29]. Lloyd,C.R., and De Marques, F. (1988). Spatial variability of throughfall and stemflow measurements in Amazonian Rainforest, Agricultural and Forest Meteorology, 42: 63-73.
[30]. Fleischbein, K., Wilcke, W., Goller, R., Boy, J., Valarezo, C., Zech, W., and Knoblich, K. (2005). Rainfall interception in a lower montane forest in Ecuador: effects of canopy properties. Hydrological Processes, 19(7): 1355-1371.
[31]. Rowe, L. (1983). Rainfall interception by an evergreen beech forest, Nelson, New Zealand. Journal of Hydrology, 66(1-4): 143-158.
[32]. Lankreijer, H.J.M., Hendriks, M.J., and Klaassen, W. (1993). A comparison of models simulating rainfall interception of forests. Agricultural and Forest Meteorology, 64: 187-199.
[33].Llorens, P., and Gallart, F. (2000). A simplified method for forest water storage capacity measurement. Journal of Hydrology, 240: 131-144.
[34]. Shi, Z., Wang, Y., Xu, L., Xiong, W., Yu, P., Gao, J., and Zhang, L. (2010). Fraction of incident rainfall within the canopy of a pure stand of Pinus armandii with revised Gash model in the Liupan Mountains of China. Journal of Hydrology, 385: 44-50.
[35]. Zinke, P.J. (1967). Forest interception studies in the United States, Forest Hydrology, Pergamon Press: Oxford; 137-0161.
[36]. Bagheri, H., and Attarod, P. (2012). The effect of the meteorological parameters and rainfall size on rainfall interception of Cupressus arizonica and Pinus eldarica in the arid climate zone (case study: Biarjmand-e Shahroud). Iranian Journal of Forest, 3(4): 291-303.
[37]. Gash, J.H.C., Wright, I.R., and Lloyd, C.R. (1980). Comparative estimates of interception loss from three coniferous forests in Great Britain. Journal of Hydrology, 48: 89-105.
[38]. Carlyle-Moses, D.E. (2004). Throughfall, stemflow, and canopy interception loss fluxes in a semi-arid Sierra Madre Oriental mattoral. Journal of Arid Environments, 297: 124-135.
[39]. Pypker, T.G., Tarasoff, C.C., and Koh, H.S. (2012). Assessing the efficacy of two indirect methods for quantifying canopy variables associated with the interception loss of rainfall in temperate hardwood forests. Open Journal of Modern Hydrology, 2: 29-40.
[40]. Deguchi, A., Hattori, S., and Park, H. (2006). The influence of seasonal changes in canopy structure on interception loss: application of the revised Gash model. Journal of Hydrology, 319: 80-102.
[41]. Gerrits, A.M.J., Pfister, L., and Savenije, H.H.G. (2010). Spatial and temporal variability of canopy and forest floor interception in a beech forest. Hydrological Processes, 24: 3011-3025.
[42]. Liang, W., and Ding, G. (2013). Simulation of rainfall interception in a Pinus tabulaeformis plantation in North China. Journal of Food, Agriculture and Environment, 11(1): 976-981.
[43]. Llorens, P., Poch, R., Latron, J., and Gallart, F. (1997). Rainfall interception by a Pinus sylvestris forest patch overgrown in a Mediterranean mountains abandoned area II. Assessment of the applicability of Gash’s anaylitical model. Journal of Hydrology, 199: 346-359.
[44]. Xu, Z., Feng, Z., Zhao, C., Zheng, J., Yang, J., Tian, F., Peng, H., and Sher, H. (2013). The canopy rainfall interception in actual and potential distribution of Qinghai spruce (Picea crassifolia) forest. Journal of Hydrology and Hydromechanics,61(1): 64-72.
[45]. Pereira, F.L., Gash, J.H.C., David, J.S., David, T.S., Monteiro, P.R., and Valente, F. (2009). Modelling interception loss from evergreen oak Mediterranean Savannas: application of a tree-based modelling approach. Agricultural and Forest Meteorology, 149(3-4): 680-688.
[46]. Horton, R.E. (1919). Rainfall interception. Monthly Weather Review, 47(9): 623-603.
[47]. Raupach, M.R., Finnigan, J.J., and Brunet, Y. (1996). Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorology, 78: 351-382.
[48]. Kume, T., Manfroi, O.J., Kuraji, K., Tanaka, N., Horiuchi, T., Suzuki, M., and Kumagai, T. (2008). Estimation of canopy water storage capacity from sap flow measurements in a Bornean tropical rainforest. Journal of Hydrology, 352: 288-295.
[49]. Glock, W.S., and Agerter, S.R. (1962). Rainfall and tree growth. In: T.T. Kozlowski (ed.), Tree Growth. Ronald Press, New York. | ||
آمار تعداد مشاهده مقاله: 1,823 تعداد دریافت فایل اصل مقاله: 1,183 |