تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,095,379 |
تعداد دریافت فایل اصل مقاله | 97,201,657 |
پاسخ های مورفوـ فیزیولوژی نهال های اقاقیا (.Robinia pseudoacacia L) به تنش خشکی | ||
نشریه جنگل و فرآورده های چوب | ||
مقاله 18، دوره 68، شماره 3، آبان 1394، صفحه 715-727 اصل مقاله (631.34 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jfwp.2015.55600 | ||
نویسندگان | ||
ناصر نوروزی هارونی1؛ مسعود طبری کوچکسرایی* 2 | ||
1دانشآموختة کارشناسی ارشد جنگلداری، دانشگاه تربیت مدرس، نور، ایران | ||
2استاد، گروه جنگلداری، دانشگاه تربیت مدرس، نور، ایران | ||
چکیده | ||
هدف این تحقیق بررسی پاسخهای مورفوـ فیزیولوژی نهال اقاقیا تحت تنش خشکی (دورة آبیاری در سطوح 4، 8، 12 و 16 روزه) بود. آزمایش در قالب طرح کاملاً تصادفی در محیط گلخانه صورت گرفت. نتایج نشاندهندة معناداری کلیة صفات بررسیشده تحت تنش (غیر از کارایی مصرف آب) بود. بیشترین مقدار در اغلب صفات اندازهگیریشده به تیمار آبیاری 4 روزه اختصاص داشت. بزرگترین اندازة طول ریشه متعلق به نهالهای آبیاری 12 روزه و بزرگترین اندازة وزن خشک ریشه متعلق به نهالهای دورة آبیاری 4 و 8 روزه بود. بالاترین میزان کارایی آب نهالها به آبیاری 8 روزه و بیشترین میزان نشت الکترولیت برگها به آبیاری 16 روزه اختصاص داشت. بهطورکلی، نهالهای با دورة آبیاری 4 روزه بهترین پاسخهای مورفوـ فیزیولوژی را به تنش خشکی نشان دادند. البته، از نظر صفات مطالعهشده، بهویژه زندهمانی و اندازههای رویشی، نهالها به تیمار آبیاری 8 روزه (با اختلاف کمی نسبت به دورة آبیاری 4 روزه) پاسخ به نسبت خوبی به تنش خشکی نشان دادند؛ طوریکه این تیمار میتواند بهمنزلة دور آبیاری قابل قبول و اقتصادی مد نظر قرار گیرد. پژوهشهای مشابه میتواند در نهالستانهای جنگلی با اقالیم سازگار این گونه صورت گیرد. | ||
کلیدواژهها | ||
تنش خشکی؛ دورة آبیاری؛ رشد؛ فتوسنتز؛ نشت الکترولیت | ||
عنوان مقاله [English] | ||
Morpho-Physiological Responses of Black Locust (Robinia pseudoacacia L.) Seedlings to Drought Stress | ||
نویسندگان [English] | ||
naser norouzi haroni1؛ Masoud Tabari koochksaraee2 | ||
1M.Sc. Student of Forestry, Faculty of Natural Resources, Tarbiat Modares University, Noor, I.R. Iran | ||
2; Professor, Faculty of Natural Resources, Tarbiat Modares University, Noor, I.R. Iran | ||
چکیده [English] | ||
This study was conducted to study of morpho-physiological responses of Robinia pseudoacacia L. seedlings under drought stress by irrigation period at 4 levels (intervals of 4, 8, 12 and 16 days). The experiment was performed as completely randomized design in a greenhouse environment. Results indicated that all studied traits were affected by water stress, except water use efficiency (WUE). The greatest value of most traits was observed in 4-day irrigation. Seedlings treated by 12- day irrigation had the largest root length. The biggest root dry weight belonged to seedlings irrigated in intervals of 4 and 8 days. Irrigation periods of 8 and 16 days remained the highest water use efficiently (WUE) and electronic leakage (EL) for seedlings, respectively. Generally, seedlings with 4-day irrigation period indicated the best response to drought stress. Of course, 8-day irrigation period showed a relatively well response to water stress especially in terms of survival and growth parameters whereas it can be considered as an appropriate and economic irrigation. Similar investigations can be performed in forest nurseries where climate is adapted for R. pseudoacacia growing. | ||
کلیدواژهها [English] | ||
Black locust, Drought stress, Growth, Irrigation period, photosynthesis, electrolyte leakage | ||
مراجع | ||
]1[. Kafi, M., and Mahdavi-Damghani, A. (2000). Mechanism of Tolerance to Environmental Stress in Sowings Plant. Ferdowsi University of Mashhad, 467pp.
]2[. Jones, H.G., and Corlett, J.E. (1992). Current topics in drought physiology. Journal of Agricultural Science-Cambridge, 11(9): 291-291.
]3[. Mirzaei, D.J., Tabari, M., and Daroodi, H. (2007). Early growth of Quercus castaneifolia seedlings as affected by weeding, shading and irrigation. Pakistan Journal of Biological Sciences, 10 (15): 2430-2435.
]4[. Rad, M.H., Asare, M.H., and Soltani, M. (2010). Root responses of Eucalyptus (Eucalyptus camaldulensis Dehnh.) to drought stress. Iranian Forest and Poplar Research, 18(2): 285-296.
[5[. Lowlor, D.W., and Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants, Plant Cell and Environment, 25:275-294.
[6[. Sanchez, D.H., Siahpoosh, M.R., Roessner, U., Udvardi, M., and Kopka, J. (2008). Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiologia Plantarum, 132(2): 209-219.
[7[. MansWeld, T.J., and Atkinson, C.J. (1990). Stomatal behavior in water stressed plants in: Alscher R.G., Cumming J.R. (Eds.) “Stress Responses in Plants: Adaptation and Acclimation Mechanisms” Wiley-Liss, New York. 241-264.
[8[. Kafi, M., Borzoi, A., Salehi, M., Kamandi, A., Masomi, A., and Nabati, J. (2009). Environmental stress physiology in plants. Jahad Mashhad University Press. 502pp.
[9[. Colom, M.R., and Vazzana, C. (2001). Drought stress effects on three cultivars of Eragrostis curvula: photosynthesis and water relations. Plant Growth regulation, 34 (2): 195-202.
[10[. Sarmadnia, G., and Kochaki, A. (1989). Crop Physiology (translated). Jahad Mashhad University Press. 467p.
[11[. Akamatsu, F., Ide, K., Shimano, K., and Toda, H. (2011). Nitrogen stocks in a riparian area invaded by N-fixing black locust (Robinia pseudoacacia L.). Landscape and Ecological Engineering, 7 (1): 109-115.
[12[. Maekawa, M., and Nakagoshi, N. (1997). Impact of biological invasion of Robinia pseudoacacia on zonation and species diversity of dune vegetation in Central Japan. Japan Journal Ecology, 47 (2):131–143.
[13[. Yamada, K., and Masaka, K. (2007). Present distribution and historical background of the invasive alien species Robinia pseudoacacia on former coalmine land in Hokkaido. Japan Journal Conservation Ecology, 12 (2):94–102.
[14[. Boring, L.R., and Swank, W.T. (1984). The role of black locust (Robinia pseudoacacia) in forest succession. The Journal of Ecology, 749-766.
[15[. Saxton, K.E., Rawls, W.J., Romberger, J.S., and Papendick, R.I. (1986). Estimating generalized soil-water characteristics from texture. Soil Science Society of America Journal, 50:1031-1036.
[16[. Xiaoling, L., Ning, L., Jin, Y., Fuzhou, Y., Faju, C., and Fangqing, C. (2011). Morphological and photosynthetic responses of riparian plant Distylium chinense seedlings to simulated autumn and winter flooding in three gorges reservoir region of the Yangtze River, China. Acta Ecologica Sinica, 31: 31-39.
[17[. Kusaka, M., Ohta, M., and Fujimura, T. (2005). Contribution of inorganic components to osmotic adjustment and leaf folding for drought tolerance in pearl millet, Plant Physiology, 125: 474–189.
[18[. Jarrett, R.D. (1991). Paleohydrology and its value in analyzing floods and droughts, US Geological Survey Water-Supply, 2375 pp.
[19[. Fotelli, M.N., Radoglou, K.M., and Constantinidou, H.I. (2000). Water stress responses of seedlings of four Mediterranean oak species. Tree Physiology, 20 (16): 1065-1075.
[20[. Asri, M., Tabari, M., Alavi-Panah, S.K., and Mahdavi, R. (2007). Growth and development of oak seedlings at different irrigation levels. Research and Development, 78: 167-176.
[21[. Ehsani-Tabatabaei, F. (2006). Plant Stresses of Physiology. Payam Noor University Press. 247pp.
[22[. Peng, Y., Lin, W., Cai, W., and Arora, R. (2007). Over expression of a panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants. Planta, 226 (3): 729-740.
[23[. Duan, B., Lu, Y., Yin, C., Junttila, O., and Li, C. (2005). Physiological responses to drought and shade in two contrasting Picea asperata populations. Physiologia Plantarum, 124 (4): 476-484.
[24[. Iivonen, S., Rikala, R., and Vapaavuori, E. (2001). Seasonal root growth of Scots pine seedlings in relation to shoot phenology, carbohydrate status, and nutrient supply. Canadian Journal of Forest Research, 31(9): 1569-1578.
[25[. Zolfaghari, R., Fayyaz, P., Nazari, M., and Valladares, F.(2013). Interactive effects of seed size and drought stress on growth and allocation of Quercus brantii Lindl. seedlings from two provenances. Turkish Journal of Agriculture and Forestry, 37.
[26[. Rao, G.R., Korwar, G.R., Shanker, A.K., and Ramakrishna, Y.S. (2008). Genetic associations, variability and diversity in seed characters, growth, reproductive phonology and yield in Jatropha curcas (L.) accessions. Trees, 22: 697–709.
[27[. Khaldbrin, B., and Eslamzade, M.T., (2001). The mineral feeding higher plants. Volume I (Translated). Shiraz University. 451pp.
[28[. Gallé, A., Haldimann, P., and Feller, U. (2007). Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. New Phytologist, 174 (4): 799-810.
[29[. Loreto, F., Ciccioli, P., Cecinato, A., Brancaleoni, E., Frattoni, M., and Tricoli, D. (1996). Influence of environmental factors and air composition on the emission of α-pinene from Quercus ilex leaves. Plant Physiology 110: 267–275.
[30[. Demmig, B.,and Bjorkman, O. (1987). Comparison of the effect of excessive light on chlorophyll fluorescence (77 K) and photon yield of O, evolution in leaves of higher plants. Planta 171: 171-184.
[31[. Moriana, A., Villalobos, F.J., and Fereres, E. (2002). Stomatal and photosynthetic responses of olive (Olea europaea L.) leaves to water deficits. Plant, Cell and Environment, 25(3): 395-405.
[32[. Sánchez-Blanco, M. J., Ferrández, T., Morales, M., Morte, A., and Alarcón, J.J. (2004). Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glomus deserticola under drought conditions. Journal of Plant Physiology, 161: 675-682.
[33[. Araus, J.L., Slafer, G.A., Reynolds, M.P., and Royo, C. (2002). Plant breeding and drought in C-3 cereals: what should we breed for? Annual Botany, 89: 925–940.
[34[. Diaz-Lopez, L., Gimeno, V., Simon, I., Martinez, V., Rodriguez-Ortega, W.M., and García-Sánchez, F. (2012). Jatropha curcas seedlings show a water conservation strategy under drought conditions based on decreasing leaf growth and stomatal conductance. Agricultural Water Management, 105: 48-56.
[35[. Ranney, T.G. 1989. Comparative physiology and drought tolerance in selected woody plants. PhD Dissertation, Cornell Univ., Ithaca, N.Y.
]36[. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., and Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. In Sustainable Agriculture. Springer Netherlands. 153-188 pp.
]37[. Huang, W., Fu, P.L., Jiang, Y. J., Zhang, J.L., Zhang, S. B., Hu, H., and Cao, K.F. (2013). Differences in the responses of photosystem I and photosystem II of three tree species Cleistanthus sumatranus, Celtis philippensis and Pistacia weinmannifolia exposed to a prolonged drought in a tropical limestone forest. Tree Physiology, 33(2): 211-220.
[38[. Premachandra, G. S., Saneoka, H., Fujita, K.,andOgata, S. (1992). Leaf water relations, osmotic adjustment, cell membrane stability, epicuticular wax load and growth as affected by increasing water deficits in sorghum. Journal of Experimental Botany, 43(12): 1569-1576. | ||
آمار تعداد مشاهده مقاله: 1,999 تعداد دریافت فایل اصل مقاله: 1,077 |