تعداد نشریات | 161 |
تعداد شمارهها | 6,489 |
تعداد مقالات | 70,096 |
تعداد مشاهده مقاله | 123,174,149 |
تعداد دریافت فایل اصل مقاله | 96,404,693 |
اولویت بندی زیرحوضه ها با استفاده از آنالیز مورفومتری و تغییرات کاربری اراضی | ||
اکوهیدرولوژی | ||
مقاله 3، دوره 2، شماره 3، مهر 1394، صفحه 261-274 اصل مقاله (1.32 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ije.2015.57296 | ||
نویسندگان | ||
مقدسه فلاح1؛ مازیار محمدی1؛ عطااله کاویان* 2 | ||
1کارشناس ارشد آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی ساری | ||
2. دانشیار،گروه مهندسی آبخیزداری، دانشکدۀ منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری | ||
چکیده | ||
اولویتبندی حوضۀ آبخیز در مدیریت منابع طبیعی و خصوصاً مدیریت آبخیز بسیار مهم است. در این مطالعه از پارامترهای مورفومتری و تغییرات کاربری اراضی با استفاده از تکنیک RS و GIS بهمنظور شناسایی زیرحوضههای حساس به فرسایش استفاده شده است. پارامترهای مورفومتری در نظر گرفتهشده شامل اختلاف ارتفاع، پارامترهای خطی (تراکم زهکشی، نسبت انشعاب، طول جریان روی سطح زمین، فراوانی آبراهه و بافت زهکشی) و پارامترهای شکل (نسبت کشیدگی، ضریب فشردگی، ضریب گردی، شاخص شکل و فاکتور شکل) هستند. با استفاده از تکنیک RS، نقشۀ کاربری اراضی حوضۀ آبخیز تالار در پنج کاربری شامل، اراضی مرتع، جنگل، مسکونی، کشاورزی آبی و کشاورزی دیم در سالهای 1991 و 2014 تهیه شد. اولویتبندی زیرحوضهها در چهار اولویت خیلی زیاد، زیاد، متوسط و کم برمبنای پارامترهای مورفومتری، پارامترهای کاربری اراضی و درنهایت با ادغام دو پارامتر مورفومتری و تغییرات کاربری اراضی صورت گرفت. برمبنای اولویتبندی تأثیر دو پارامتر مورفومتری و کاربری اراضی با هم از بین 21 زیرحوضۀ تالار نه زیرحوضه با 56/60 درصد مساحت در اولویت خیلی زیاد، شش زیرحوضه با 22/25 درصد مساحت در اولویت زیاد، پنج زیرحوضه با 19/12 درصد مساحت در اولویت متوسط و یک زیرحوضه با مساحت 03/2 درصد در اولویت کم قرار گرفتند. بیشترین مساحت حوضه در اولویت زیاد واقع شده است که نیاز به اقدامات فوری برای کنترل فرسایش و برنامههای حفاظتی حوضۀ آبخیز دارد. | ||
کلیدواژهها | ||
حساسیت به فرسایش؛ حوضۀ آبخیز تالار؛ عملیات آبخیزداری | ||
عنوان مقاله [English] | ||
Prioritization of Sub-watershedsusing Morphometric and LandUse change Analysis | ||
نویسندگان [English] | ||
Moghadase Fallah1؛ Maziar Mohammadi1؛ Ataollah Kavian2 | ||
1M. Scin Watershed Management, Sari Agricultural Sciences and Natural Resources University | ||
2Associate Professor, College of Natural Resources, Sari Agricultural Sciences and Natural Resources University | ||
چکیده [English] | ||
Prioritization of sub-watersheds is very important in the natural sources and watershed management. In this study, the morphometric parameter and landuse changes using RS and GIS techniques used in order to identify erosion-prone sub-watersheds. The Morphometric parameter such as basin relief, the linear parameters (drainage density, bifurcation ratio, length of overland flow, stream frequency and drainage texture) and the shape parameters (elongation ratio, compactness coefficient, basin circularity, shape index and form factor) were considered. The landuse map of Talar watershed using RS technique provided into five land, rangeland, forest, residential, irrigated farming, dry land farming in 1999 and 2014. Prioritization of sub-watersheds were implemented into four categories as very high, high, medium and low base on morphometric parameter, landuse change analysis and finally integration of morphometric parameter and land use change analysis. based on integration of morphometric and land use analysis 9 sub-watershed with 656/0% area were considered in the very high priority, 6 sub-watershed with 25.22% area in the high priority, 5 sub-watershed with 12.19% area in the medium priority and 1 sub-watershed with 2.03% area in the low priority. The most of basin area is located in the high priority that requires immediate action to erosion control and implementprotection programs. | ||
کلیدواژهها [English] | ||
erosion-prone, watershed practices, Talar watershed | ||
مراجع | ||
[1] اسدی نیلوان، امید؛ سقازاده، نرگس؛ سلحشور دستگردی، مریم؛ بای، محبوبه. (1394). «اولویتبندی زیرحوضهها با استفاده از آنالیز مورفومتری و GIS بهمنظور اقدامات آبخیزداری (مطالعۀ موردی: حوضۀ آبخیز مراوه تپه، استان گلستان)». اکوهیدرولوژی، شمارۀ 2 (1)، صص 103-91. [2] آمانی، محمد؛ نجفینژاد، علی. (1393). «اولویتبندی زیرحوضهها با استفاده از آنالیز مورفومتری، فنون سنجش از دور و GIS، حوزة آبخیز لهندر، استان گلستان». پژوهشنامه مدیریت حوزۀ آبخیز، سال پنجم، 9، ص 15-1. [3] رسولی، علیاکبر. مبانی سنجش از دور کاربردی با تأکید بر پردازش تصاویر ماهوارهای. انتشارات دانشگاه تبریز، (1378). [4] سلاجقه، علی؛ سیدعلیپور، محمدحسین؛ حسینعلیزاده، محسن. اصول مدیریت و حفاظت خاک (جلد چاپ اول). انتشارات دانشگاه تهران، (1392). [5] علیزاده، امین. اصول هیدرولوژی کاربردی. دانشگاه امام رضا، (1390)، چاپ سی و دوم، ص 912. [6] فلاح سورکی، مقدسه؛ کاویان، عطااله؛ امیدوار، ابراهیم. (1394). «اولویتبندی زیرحوضههای آبخیز هراز بهمنظور حفاظت آب و خاک برمبنای پارامترهای مورفومتری». دومین همایش ملی تغییرات اقلیم و مهندسی توسعۀ پایدار کشاورزی و منابع طبیعی. شهریورماه، دانشگاه شهید بهشتی تهران، ایران. [7] محمدی، مازیار. (1394). «ارزیابی اثرات تغییر کاربری اراضی بر کمیت و کیفیت آب رودخانۀ تالار با استفاده از سنجش از دور و مدلسازی هیدرولوژیکی». پایاننامة کارشناسی ارشد، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ص 116. [8] مهدوی، محمد. هیدرولوژی کاربردی (جلد دوم). انتشارات دانشگاه تهران، (1388)، چاپ ششم، ص435. [9] Ahmed, F., and Srinivasa Rao, K. (2015). Prioritization of Sub-watersheds based on Morphometric Analysis using Remote Sensing and Geographic Information System Techniques. International Journal of Remote Sensing and GIS, vol 4(2),pp. 51-65.
[10] Altaf, S., Meraj, G., and Romshoo, S. (2014). Morphometry and land cover based multi-criteria analysis for assessing the soil erosion susceptibility of the western Himalayan watershed. Environmental Monitoring and Assessment, vol186(12), pp. 8391-8412.
[11] Ansari, Z., Rao, L., and Yusuf, A. (2012). GIS based Morphometric Analysis of Yamuna Drainage Network in parts of Fatehabad Area of Agra District, Uttar Pradesh. JOURNAL GEOLOGICAL SOCIETY OF INDIA, vol 79,pp. 505-514.
[12] Avinash, K., Jayappa, K., and Deepika, B. (2011). Prioritization of sub-basins based on geomorphology and morphometric analysis using remote sensing and geographic information system (GIS) techniques. Geocarto International, vol 26(7), pp. 569-592.
[13] Biswas, S., Sudharakar, S., and Desai, V. (1999). Prloritization of subx~atersheds based on morphometric analysis of drainage basin A Remote Sensing and GIS approach. Journal oflnandan Society of Remote Sensing, vol 27(3), pp. 155-166.
[14] Canty, M. (2006). Image Analysis, Classification and Change Detection in Remote Sensing: with Algorithms for Envi/Idl. CRC Press.
[15] Chandrashekara, H., Lokeshb, K., Sameenac, M., roopad, J., and rangannae, G. (2015). GIS –Based Morphometric Analysis of Two Reservoir Catchments of Arkavati River, Ramanagaram District, Karnataka. Aquatic Procedia, INTERNATIONAL CONFERENCE ON WATER RESOURCES, COASTAL AND OCEAN ENGINEERING (ICWRCOE 2015), vol 4, pp. 1345 – 1353.
[16] Chen, J., Hill, A., and Urbano, L. (2009). A GIS-based model for urban flood inundation. Journal of Hydrology, vol 373, pp. 184–192.
[17] Dar, R., Chandra, R., and Romshoo, S. (2013). Morphotectonic and Lithostratigraphic analysis of Intermontane Karewa basin of Kashmir Himalayas, India. Journal of Mountain Science, vol 10(1), 1–15.
[18] Gajbhiye, S., Mishra, S., and Pandey, A. (2014). Prioritizing erosion-prone area through morphometric analysis:an RS and GIS perspective. Appl Water Sci, vol 4, pp.51–61.
[19] Getachew, H., and Melesse,, A. (2015). Effects of Land Use Change on Sediment and Water Yields in Yang Ming Shan National Park, Taiwan. Environments, vol 2, pp.32-42.
[20] Harlin, J., and Wijeyawickrema, C. (1985). Irrigation and groundwater depletion in Caddo county, Oklahoma. JAWRA Journal of the American Water Resources Association, vol 21(1), pp. 15–22.
[21] Hlaing, k., Haruyama, S., and Maung, A. (2008). Using GIS-based distributed soil loss modeling and morphometric analysis to prioritize watershed for soil conservation in Bago river basin of Lower Myanmar. Front. Earth Sci. China, vol.2 (4), pp. 465–478.
[22] Ho¨rmann, G., Horn, A., and Fohrer, N. (2005). The evaluation of land-use of land use change on hydrology by ensemble modelling (LUCHEM) III: scenario analysis. Adv Water Resour, vol 32,pp. 159–70.
[23] Horton, R. (1932). Drainage basin characteristics. Transactions of the American Geophysical Union, vol 13(1), pp. 350–361.
[24] Horton, R. (1945). Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, vol 56, pp. 275–370.
[25] Howard, A. (1990). Role of hypsometry and planform in basin hydrologic response. Hydrological Processes, vol 4(4), pp. 373–385.
[26] Huang, T., and Lo, K. (2015). Effects of Land Use Change on Sediment and Water Yields in Yang Ming Shan National Park, Taiwan. Environments, vol 2, pp. 32-42.
[27] Jacobson, C. R. (2011). Identification and quantification of the hydrological impacts of imperviousness in urban catchments: a review. J. Environ. Manag, vol 92, pp. 1438–48.
[28] Javed, A., Khanday, M., and Ahmed, R. (2009). Prioritization of subwatersheds based on morphometric and land-use analysis using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, vol 37, pp.261–274.
[29] Jee Omar, P. (2015). Geomatics Techniques Based Significance of Morphometric Analysis in Prioritization of Watershed. International Journal of Enhanced Research in Science Technology and Engineering, vol 4(1), pp. 24-13.
[30] Kavian, A., Azmoodeh, A., and Solaimani, K. (2013). Deforestation effects on soil properties, runoff and erosion in northern Iran. Arabian Journal of Geosciences, doi:10.1007/s12517-013-0853-1.
[31] Khan, M., Gupta, V., and Moharana, P. (2001). Watershed prioritization using remote sensing and geographical information system: a case study from Guhiya, India. Journal of Arid Environments, vol 49, pp.465-475.
[32] Kumar, R., Kumar, S., Lohani, A., Nema, R., and Singh, R. (2000). Evaluation of geomorphological characteristics of a catchment using GIS. GIS India, vol 9(3), pp.13–17.
[33] Lillesend, T., and Kiefer, P. (2000). Remote sensing and image interpretation. 4th ed.,Nwe York: John wileyand Sons.
[34] Lu, X. X., and Higgitt, D. L. (2000). Estimating erosion rates on sloping agricultural land in the Yangtze Three Gorges, China, from caesium-137 measurements. Catena, vol 39, pp. 33–51.
[35] Miller, V. (1953). A Quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area, Virginiaand Tennessee. Tech. Rep. 3 NR 389-402, Columbia University, Department of Geology, ONR, New York, NY,USA.
[36] Nooka, R., Srivastava, Y., Rao, V., Amminedu, E., and Murthy, K. (2005). Check dam positioning by prioritization of micro watersheds using SYI model and morphometric analysis - Remote Sensing and GIS perspective. Journal of Indian Society of Remote Sensing, vol 33(1), pp. 25-38.
[37] Schumms, S. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New jersey. Bulletin of the Geological Society of America, vol 67, pp. 597–646.
[38] Sharma, S., Tignath, S., and Mishra, S. (2008). Morphometric analysis of drainage basin using GIS approach. JNKVV Res J,vol 42(1),pp. 88–92.
[39] Strahler, A. (1964). Quantitative geomorphology of drainage basins and channel networks. In V. T. Chow (Ed.), Handbook of applied hydrology, pp.4–11.
[40] Thakkar, A., and Dhiman, S. (2007). Morphometric analysis and prioritization of miniwatersheds in a Mohr watershed, Gujarat using remote sensing and GIS techniques. Journal of the Indian society of Remote Sensing, vol 35 (4), pp.313–321.
[41] Todorovski, L., and Džeroski, S. (2006). Integrating knowledgedriven and data-driven approaches to modeling. Ecological Modelling, vol 194(1), pp. 3–13.
[42] Zhang, X., Zhang, Y., Wen, A., and Feng, M. (2003). Assessment of Soil Losses on Cultivated Land by Using the 137Cs Technique in the Upper Yangtze River Basin of China. Soil and Tillage Research, vol 69(1-3), pp.99-106. | ||
آمار تعداد مشاهده مقاله: 1,797 تعداد دریافت فایل اصل مقاله: 1,188 |