تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,123,270 |
تعداد دریافت فایل اصل مقاله | 97,231,250 |
برآورد پارامترهای هیدرولیکی خاک به روش معکوس با استفاده از دادههای نفوذ استوانههای دوگانه | ||
تحقیقات آب و خاک ایران | ||
مقاله 18، دوره 47، شماره 4، دی 1395، صفحه 829-838 اصل مقاله (821.31 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2016.59989 | ||
نویسندگان | ||
پریسا مشایخی1؛ شجاع قربانی دشتکی* 2؛ محمدرضا مصدقی3؛ حسین شیرانی4؛ مهدی پناهی5؛ محمدرضا نوری6 | ||
1دانشجوی دکتری/دانشگاه شهرکرد | ||
2هیئت علمی | ||
3هیات علمی/دانشگاه صنعتی اصفهان | ||
4هیات علمی/دانشگاه حضرت ولی عصر رفسنجان | ||
5هیات علمی/موسسه تحقیقات خاک و آب کرج | ||
6هیات علمی/دانشگاه شهرکرد | ||
چکیده | ||
در پژوهش حاضر از نرمافزار HYDRUS-2D/3D برای برآورد پارامترهای هیدرولیکی مدل ونگنوختن-معلم در سه بافت متفاوت خاک به روش معکوس، با استفاده از دادههای نفوذسنج استوانههای دوگانه، استفاده شد. برای این منظور نه گزینه با تعداد متفاوت پارامترهای هیدرولیکی انتخابشده برای فرایند بهینهسازی (5، 4 و 3 پارامتر)، در سه گروه مجزا تعریف شد. در گروه اول تنها از دادههای نفوذ تجمعی اندازهگیریشده به عنوان ورودی نرمافزار استفاده شد. در گروه دوم مقدار رطوبت خاک اندازهگیریشده در پتانسیل ماتریک 330- سانتیمتر (FC) و در گروه سوم از میزان رطوبت در پتانسیلهای ماتریک 330- (FC) و15000- سانتیمتر (PWP) به عنوان دادههای تکمیلی برای حل معکوس در کنار دادههای نفوذ تجمعی، استفاده شد. نتایج نشان داد با کاهش تعداد پارامترهای برآوردی در هر گروه، خطای برآورد کاهش و دقت تخمین سایر پارامترهای هیدرولیکی خاک افزایش مییابد. همچنین استفاده از رطوبت FC در کنار دادههای نفوذ تجمعی باعث کاهش خطای برآورد شد. بنابراین انتخاب سه پارامتر هدایت هیدرولیکی اشباع (Ks)، شکل منحنی رطوبتی (n) و پارامتر مرتبط با عکس مکش در نقطه ورود هوا (α) به عنوان پارامترهای تخمینی و استفاده همزمان ازFC و دادههای نفوذ تجمعی اندازهگیریشده با کمترین میزان خطای شبیهسازی همراه بود. در این گزینه مقادیر RMSE(cm3)، NRMSE، AIC و R2 به ترتیب برابر با 1259، 2/528، 0081/0 و 9999/0 برای خاک لوم شنی، 242، 0/79، 0059/0 و 9988/0 برای خاک لومی و 298، 6/153، 0174/0 و 9983/0 برای خاک رس سیلتی بود. افزودن رطوبت PWP میزان خطا را در هر سه نوع بافت خاک افزایش داد. | ||
کلیدواژهها | ||
حل عددی؛ مدل ونگنوختن-معلم؛ نفوذ غرقابی؛ نرمافزار HYDRUS | ||
عنوان مقاله [English] | ||
Estimation of soil hydraulic parameters using double-ring infiltrometer data via inverse method | ||
نویسندگان [English] | ||
Parisa Mashaiekhi1؛ Shoja Ghorbani Dashtaki2؛ Mohammadreza Mosadeghi3؛ Hosein Shirani4؛ Mahdi Panahi5؛ Mohammadreza Noori6 | ||
چکیده [English] | ||
In this study, HYDRUS2D/3D software was used to estimate the hydraulic parameters of van Genuchten-Mualem model via inverse modeling using double-ring infiltrometers data in 3 different soil textures. Nine scenarios of inverse modeling (divided in three groups) were considered with different number (5, 4 and 3) of fitted hydraulic parameters for optimization. In the first group, simulation was carried out solely using cumulative infiltration data. In the second group, cumulative infiltration data plus water content at h = −330 cm (i.e. field capacity, FC) were used as inputs. In the third group, cumulative infiltration data plus water contents at h = −330 cm (FC) and h = −15000 cm (i.e. permanent wilting point, PWP) were used simultaneously as predictors. The results indicated that by reducing the number of hydraulic parameters involved in the optimization process, simulation error is reduced and the prediction accuracy of other soil hydraulic parameters would be increased. Including FC as an additional data was important to better optimize/define soil hydraulic functions. So using of (Saturated hydraulic conductivity) Ks, (Shape parameter of soil water characteristic curve) n and (the parameter that inversely related to the air entry value) a as predictor parameters an FC as an additional data was the best scenario. RMSE(cm3)، NRMSE، AIC، and R2 were respectively 1259, 528.2, 0.0081 and 0.9999 in Sandy Loam soil, 242, 79.0, 0.0059 and 0.9988 in Loamy soil and 298, 153.6, 0.0174 and 0.9983 in Silty Clay soil. Using PWP as additional data, increased the simulation error in all 3 soil textures. | ||
کلیدواژهها [English] | ||
HYDRUS software, Numerical solution, Saturated Infiltration, Van Genuchten–Mualem model | ||
مراجع | ||
Abbasi, F., and Tajik, F. (2007). Inverse simultaneous estimation of hydraulic and solute transport parameters in soil at field scale. J. Sci. Technol. Agric. Nat. Resour., 11(1A), 111–122. (In Farsi) Abbasi, F., Šimůnek, J., Feyen, J., van Genuchten, M.Th., and Shouse, P. J. (2003). Simultaneous inverse estimation of soil hydraulic and solute transport parameters from transient field experiments: homogeneous soil. Trans. ASAE, 46(4), 1085–1095. Alletto, L., Pot, V., Giuliano, S., Costes, M., Perdrieux, F., Justes, E. (2015) Temporal variation in soil physical properties improves the water dynamics modeling in a conventionally-tilled soil. Geoderma, 243(244), 18–28. Asgarzadeh, H., Mosaddeghi, M. R., Dexter, A. R., Mahboubi, A. A., and Neyshabouri, M. R. (2014). Determination of soil available water for plants: consistency between laboratory and field measurements. Geoderma, (226–227), 8–20. El-Nesr, N. M., Alazba, A. A., and Šimůnek, J., (2014). HYDRUS simulations of the effects of dual-drip subsurface irrigation and a physical barrier on water movement and solute transport in soils. Irrig. Sci., 32, 111–125. Fuladipanah, M. (2012). Sensitivity analysis of one dimensional hydrodynamic fully coupled model. Middle-East J. Scientific Res., 12 (11), 1471–1476. Ghaiumi Mohammadi, H and Nurbakhsh, F. (2007). Detailed soil survey of Chahar-Takhteh Agricultural research station (Chaharmahal and Bakhtiari Province). Technical report,No, 6399. 27 p. (In Farsi) Ghorbani Dashtaki, Sh., Homaee, M., Mahdian, M. H., and Kouchakzadeh, M. (2009). Site-dependence performance of infiltration models, Water Resour. Manage., 23, 2777–2790. Hopmans, J. W., Šimůnek, J., Romano, N. and Durner, W. (2002 (. Simultaneous determination of water transmission and retention properties. Inverse methods. In: Methods of Soil Analysis. Part 4. Physical Methods. (J.H. Dane and G.C. Topp, Eds.). SSSA Book Series No. 5. PP. 963–1008. Ines, A. V. M., and Droogers, P. (2002). Inverse modelling in estimating soil hydraulic functions: a Genetic Algorithm approach. Hydrol. Earth Syst. Sci., 6, 49-66, Kandelous, M. M., and Šimůnek, J. (2010). Numerical simulations of water movement in a subsurface drip irrigation system under field and laboratory conditions using HYDRUS-2D. Agric. Water Manage., 97, 1070–1076. Klute, A. (1986). Methods of Soil Analysis. Part 1- Physical and Mineralogical Methods. 2nd ed., Agronomy No. 9. ASA/SSSA Inc., Madison, Wisconsin, USA. Lou, Y., and Ren, L. (2011). Numerical evaluation of depth effects of double-ring infiltrometers on soil saturated hydraulic conductivity measurements. Soil Sci. Soc. Am. J., 76, 867–875. Marquardt, D. W. (1963). An algorithm for least squares estimation of non-linear parameters. J. Appl. Ind. Math, 11, 431–441. Mirzaee, S., Zolfaghari, A. A., Gorji, M. Miles Dyck, M., and Ghorbani Dashtaki, S. (2013). Evaluation of infiltration models with different numbers of fitting parameters in different soil texture classes Arch. Agron. Soil Sci., http://dx.doi.org/10.1080/03650340.2013.823477. In Taylor & Francis Nakhaei, M., and Šimůnek, J. (2014). Parameter estimation of soil hydraulic and thermal property functions for unsaturated porous media using the HYDRUS-2D code. J. Hydrol. Hydromech., 62(1), 7–15. Pollalis, E. D., and Valiantzas, J. D. (2015). Isolation of a 1D infiltration time interval under ring infiltrometers for determining sorptivity and saturated hydraulic conductivity: numerical, theoretical, and experimental approach. J. Irrig. Drain. Eng., 141(2), 10.1061/(ASCE)IR.1943-4774.0000796. Raoof, M., and Pilpayeh, A. R., (2013). Estimating soil wetting profile under saturated infiltration process by numerical inversion solution in land slopes. Middle East J. Sci. Res., 13(6), 732–736. Ramos, T. B., Šimůnek, J., Gonҫalves, M. C., Martins, J. C., Prazeres, A., and Pereira, L. S. (2012). Two-dimensional modeling of water and nitrogen fate from sweet sorghum irrigated with fresh and blended saline waters. Agric. Water Manage., 111, 87–104. Rashid, N.S.A., Askari, M., Tanaka, T., Šimůnek, J., and van Genuchten, M.Th. (2015). Inverse estimation of soil hydraulic properties under oil palm trees. Geoderma, (241–242), 306–312. Ritter, A., Hupet, F., Carpena, R. M., Lambot, S., and Van Clooster, M. (2003). Using Inverse Methods for Estimating Soil Hydraulic Properties from Field Data as an Alternative to Direct Methods. Agric. Water Manage., (59), 77–96. Ritter, A.R ., Carpena, M., Regalado, C.M., Vanclooster, M., and Lambot, S.(2004). Analysis of alternative measurement strategies for the inverse optimization of the hydraulic properties of a volcanic soil. J. Hydrol., (295), 124–139. Russo, D. Bresler, E. Shani, U. and Parker, J.C. (1991). Analysis of infiltration events in relation to determining soil hydraulic properties by inverse problem methodology. Water Resour. Res., (27), 1361–1373. Rocha, D., Abbasi, F. and Feyen, J. (2006). Sensitivity analysis of soil hydraulic properties on subsurface water flow in furrows. J. Irrig. Drain. Eng., 132(4), 418–424. Sillers, W.S., Fredlund, D.G., and Zakerzadeh, N. (2001). Mathematical attributes of some soil–water characteristic curve models. Geotech. Geol. Eng., (19), 243–283. Šimůnek, J. and van Genuchten, M. Th. (1996). Estimating unsaturated soil hydraulic properties from tension disc infiltrometer data by numerical inversion. Water Resour. Res., 32(9), 2683–2696. Šimůnek, J., Wendroth, O., and van Genuchten, M.Th., (1998). Parameter estimation analysis of the evaporation method for determining soil hydraulic properties. Soil Sci. Soc. Am. J., (62), 894–905. Šimůnek, J., Šejna, M., and van Genuchten, M. Th.1999. The HYDRUS-2D software package for simulating the two-dimensional movement of water, heat, and multiple solutes in variably saturated media, version 2.0, IGWMC-TPS-70, International Ground Water Modeling Center, Colorado School of Mines, Golden, Colo. Šimůnek, J., Šejna, M. and van Genuchten, M. Th. (2012). HYDRUS: model use, calibration and validation. American Society of Agricultural and Biological Engineers, 55(4), 1261–1274. Tiago, B., Ramos, M. C., Goncalves, J. C. M., Van Genuchten, M. Th., and Pires, F. P. (2006). Estimation of Soil Hydraulic Properties from Numerical Inversion of Tension Disk Infiltrometer Data. Vadose Zone J., 5(2), 684–696. Toomanian, N. (2009). Detailed soil survey of Khoor and Biabanak(Naiin). Technical report.No, 654. 100p. (In Farsi) US Department of Agriculture Natural Resources and Conservation Service, 2005. National Engineering Handbook, Part 623, Surface Irrigation. National Technical Information Service,Washington, DC, Chapter 4. Vanclooster, M., Javaux, M. and Lambot, S. (2007). Recent advances in characterizing flow and transport in unsaturated soil at the core and field. Estudios de la Zona No Saturada del Suelo, 3, 19–35. Zhou, Q., Kang, S., Zhang, L., and Li, F. (2007). Comparison of APRI and HYDRUS-2D models to simulate soil water dynamics in a vineyard under alternate partial root zone drip irrigation. Plant Soil, 291(1), 211–223. | ||
آمار تعداد مشاهده مقاله: 1,536 تعداد دریافت فایل اصل مقاله: 1,216 |