- Castillo-Villar, K. K., Smith, N. R. and Herbert-Acero, J. F. (2014). “Design and optimization of capacitated supply chain networks including quality measures”, Mathematical Problems in Engineering, Vol. 2014, 17, doi:10.1155/2014/218913.
- Bala, K. (2014). “Supply chain management: Some issues and challenges-a review”, International Journal of Current Engineering and Technology, Vol. 4, No. 2, PP. 947- 953.
- S. Chopra, P. Meindl, (2007). Supply Chain Management: Strategy, Planning and Operations. Prentice Hall, New Jersey.
- Melo, M. T. S. N and da Gama, F. S. (2005). “Dynamic multi-commodity capacitated facility location: A mathematical modeling framework for strategic supply chain planning”, Computers and Operations Research, Vol. 33, No.1, PP. 181- 208.
- Melo, M. T., Nickel, S. and Saldanha-Da-Gama, F. (2009). “Facility location and supply chain management–A review”, European Journal of Operational Research, Vol. 196, No. 2, PP. 401- 412.
- Correia, I., Melo, T. and Saldanha-da-Gama, F. (2013). “Comparing classical performance measures for a multi-period, two-echelon supply chain network design problem with sizing decisions”, Computers & Industrial Engineering, Vol. 64, No. 1, PP. 366- 380.
- Solo, C. J. (2009). Multi-objective, integrated supply chain design and operation under uncertainty. Ph.D thesis, The Pennsylvania State University, https://etda.libraries.psu.edu/paper/9709/5222
- Pan, F. and Nagi, R. (2013). “Multi-echelon supply chain network design in agile manufacturing”, Omega, Vol. 41, No. 6, PP. 969- 983.
- Seuring, S. (2013). “A review of modeling approaches for sustainable supply chain management”, Decision Support Systems, Vol. 54, No. 4, PP. 1513- 1520.
- 10. Tang, O. and Nurmaya Musa, S. (2011). “Identifying risk issues and research advancements in supply chain risk management”, International Journal of Production Economics, Vol. 133, No.1, PP. 25- 34.
- 11. Minner, S. (2003). “Multiple-supplier inventory models in supply chain management: A review”, International Journal of Production Economics, Vol. 81, PP. 265- 279.
- 12. Sarkis, J., Zhu, Q. and Lai, K. H. (2011). “An organizational theoretic review of green supply chain management literature”, International Journal of Production Economics, Vol. 130, No. 1, PP. 1- 15.
- 13. Meixell, M. J. and Gargeya, V. B. (2005). “Global supply chain design: A literature review and critique”, Transportation Research Part E: Logistics and Transportation Review, Vol. 41, No. 6, PP. 531- 550.
- Gan, M., Li, Z. and Chen, S. (2014). “On the transformation mechanism for formulating a multiproduct two-layer supply chain network design problem as a network flow model”, Mathematical Problems in Engineering, Vol. 2014, doi:10.1155/2014/480127.
- 15. Xu, N. and Nozick, L. (2009). “Modeling supplier selection and the use of option contracts for global supply chain design”, Computers & Operations Research, Vol. 36, No. 10, PP. 2786- 2800.
- 16. Syam, S. S. and Côté, M. J. (2010). “A location–allocation model for service providers with application to not-for-profit health care organizations”, Omega, Vol. 38, No. 3, PP. 157- 166.
- 17. Altiparmak, F., Gen, M., Lin, L. and Paksoy, T. (2006). “A genetic algorithm approach for multi-objective optimization of supply chain networks”, Computers & Industrial Engineering, Vol. 51, No. 1, PP. 196- 215.
- 18. Altiparmak, F., Gen, M., Lin, L. and Karaoglan, I. (2009). “A steady-state genetic algorithm for multi-product supply chain network design”, Computers & Industrial Engineering, Vol. 56, No. 2, PP. 521- 537.
- 19. Sahraeian, R., Bashiri, M. and Ramezani, M. (2010). “A Stochastic multi-product, multi-stage supply chain design considering products waiting time in the queue”, International Conference of Industrial Engineering and Operations Management Dhaka, Bangladesh.
- 20. Bashiri, M. et al., (2010). Facilities Planning II: Applications & research areas, Shahed University Pub. Co., Tehran.
- 21. Georgiadis, M. C., Tsiakis, P., Longinidis, P. and Sofioglou, M. K. (2011). “Optimal design of supply chain networks under uncertain transient demand variations”, Omega, Vol. 39, No. 3, PP. 254- 272.
- 22. Baghalian, A., Rezapour, S. and Farahani, R. Z. (2013). “Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case”, European Journal of Operational Research, Vol. 227, No. 1, PP. 199- 215.
- 23. Mirzapour Al-E-Hashem, S. M. J., Malekly, H. and Aryanezhad, M. B. (2011). “A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty”, International Journal of Production Economics, Vol. 134, No. 1, PP. 28- 42.
- 24. Pishvaee, M. S., Rabbani, M. and Torabi, S. A. (2011). “A robust optimization approach to closed-loop supply chain network design under ncertainty”, Applied Mathematical Modeling, Vol. 35, No. 2, PP. 637-649.
- 25. Pishvaee, M. S. and Torabi, S. A. (2010). “A possibilistic programming approach for closed-loop supply chain network design under uncertainty”, Fuzzy sets and systems, Vol. 161, No. 20, PP. 2668- 2683.
- 26. Pishvaee, M. S., Razmi, J. and Torabi, S. A. (2012). “Robust possibilistic programming for socially responsible supply chain network design: A new approach”, Fuzzy Sets and Systems, Vol. 206, PP. 1- 20.
- 27. Tavana, M., Mirzagoltabar, H., Mirhedayatian, S. M., Saen, R. F. and Azadi, M. (2013). “A new network epsilon-based DEA model for supply chain performance evaluation”, Computers & Industrial Engineering, Vol. 66, No. 2, PP. 501- 513.
- 28. Parmigiani, A., Klassen, R. D. and Russo, M. V. (2011). “Efficiency meets accountability: Performance implications of supply chain configuration, control, and capabilities”, Journal of Operations Management, Vol. 29, No. 3, PP. 212- 223.
- 29. Shafiee, M., Lotfi, F. H. and Saleh, H. (2014). “Supply chain performance evaluation with data envelopment analysis and balanced scorecard approach.” Applied Mathematical Modelling, Vol. 38, No. 21, PP. 5092-5112.
- 30. Charnes, A., Cooper, W. W. and Rhodes, E. (1978). “Measuring the efficiency of decision making units”, European Journal of Operational Research, Vol. 2, No. 6, PP. 429- 444.
- 31. Klimberg, R. K. and Ratick, S. J. (2008). “Modeling data envelopment analysis (DEA) efficient location/allocation decisions”, Computers & Operations Research, Vol. 35, No. 2, PP. 457- 474.
- 32. Moheb-Alizadeh, H., Rasouli, S. M. and Tavakkoli-Moghaddam, R. (2011). “The use of multi-criteria data envelopment analysis (MCDEA) for location–allocation problems in a fuzzy environment”, Expert Systems with Applications, Vol. 38, No. 5, PP. 5687- 5695.
- 33. Ganeshan, R. and Harrison, T. P. (1995). “An introduction to supply chain management”, Department of Management Science and Information Systems, Vol. 1, No.1, PP. 1-7.
- 34. Shen, Z. (2007). “Integrated supply chain design models: A survey and future research directions”, Journal of Industrial and Management Optimization, Vol. 3, No. 1, PP. 1- 12.
- 35. Pierce, N. A. and Giles, M. B. (1997). “Preconditioned multi-grid methods for compressible flow calculations on stretched meshes”, Journal of Computational Physics, Vol. 136, No. 2, PP. 425- 445.
- 36. Porembski, M., Breitenstein, K. and Alpar, P. (2005). “Visualizing efficiency and reference relations in data envelopment analysis with an application to the branches of a German bank”, Journal of Productivity Analysis, Vol. 23, No. 2, PP. 203- 221.
- 37. Salema, M. I. G., Barbosa-Povoa, A. P. and Novais, A. Q. (2007). “An optimization model for the design of a capacitated multi-product reverse logistics network with uncertainty”, European Journal of Operational Research, Vol. 179, No. 3, PP. 1063- 1077.
- 38. Koski, J. and Silvennoinen, R. (1987). “Norm methods and partial weighting in multi-criterion optimization of structures”, Int. J. Numer. Methods Eng., Vol. 24, No.6, PP. 1101– 1121.
- 39. Yoon, K. P. and Hwang, C. L. (1995). Multiple Attribute Decision Making, an Introduction, Sage Publications, London.
- 40. Messac, A., Sukam, C. P. and Melachrinoudis, E. (2000). “Aggregate objective functions and Pareto frontiers: Required relationships and practical implications”, Optim. Eng., Vol. 1, No.2, PP. 171– 188.
- 41. Messac, A. and Hattis, P. (1996). “Physical programming design optimization for high speed civil transport (HSCT)”, J. Aircr., Vol. 33, No.2, PP. 446– 449.
- 42. Das, I. and Dennis, J. E. (1998). “Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multi-criteria optimization problems”, SIAM J. Optim., Vol. 8, No.3, PP. 631– 657.
- 43. Messac, A., Sundararaj, G. J., Tappeta, R. V. and Renaud, J. E. (2000). “Ability of objective functions to generate points on nonconvex Pareto frontiers”, AIAA J., Vol. 38, No.6, PP. 1084– 1091.
- 44. Das, I. and Dennis, J. E. (1997). “A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multi-criteria optimization problems”, Struct. Optim., Vol. 14, No.1, PP. 63– 69.
- 45. Miettinen, K. (1999). Nonlinear Multi-objective Optimization, Kluwer Academic Publishers, Boston.
- 46. Ruiz-Canales, P. and Rufian-Lizana, A. (1995). “A characterization of weakly efficient points”, Math. Program., Vol. 68, No.1, PP. 205– 212.
- 47. Chankong, V. and Haimes, Y. Y. (1983). Multi-objective Decision Making Theory and Methodology, Elsevier Science Publishing, New York.
- 48. Carmichael, D. G. (1980). “Computation of Pareto optima in structural design”, Int. J. Numer. Methods Eng., Vol. 15, No.6, PP. 925– 952.
- 49. Laumanns, M., Thiele, L. and Zitzler, E. (2006). “An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method.”, European Journal of Operational Research, Vol. 169, No. 3, PP. 932- 942.
50. Bérubé, J. F., Gendreau, M. and Potvin, J. Y. (2009). “An exact ϵ-constraint method for bi-objective combinatorial optimization problems: Application to the traveling salesman problem with profits”, European Journal of Operational Research, Vol. 194. No. 1, PP. 39- 50.
|