تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,109,720 |
تعداد دریافت فایل اصل مقاله | 97,213,419 |
مدلسازی خصوصیات فیزیکی تخته خردهچوب ساختهشده از ساقۀ کلزا با استفاده از شبکههای عصبی مصنوعی:MLP، RBFN و ANFIS | ||
نشریه جنگل و فرآورده های چوب | ||
مقاله 18، دوره 70، شماره 1، اردیبهشت 1396، صفحه 179-188 اصل مقاله (947.38 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jfwp.2017.61611 | ||
نویسندگان | ||
مرتضی ناظریان* 1؛ سجاد اکبری2؛ حسین کرمانیان3؛ مسعود هاشمی2 | ||
1دانشیار دانشگاه زابل - شهیدبهشتی | ||
2کارشناس ارشد دانشگاه زابل | ||
3دانشیار دانشگاه شهید بهشتی | ||
چکیده | ||
فاکتورهای مختلفی بر روی خواص اوراق مرکب چوبی تاثیر گذار هستند. بررسی تمامی این فاکتورها نتنها اتلاف وقت و انرژی را افزایش میدهد، همچنین دقت در برآورد میزان تاثیر متغیرهای انتخاب شده در ساخت به منظور حصول نقطه بهینه از خواص مختلف فراوردههای مرکب چوبی را کاهش می دهد. از اینرو، لازم است تا از متدهای نوین آماری برای تعیین مدل برآورد کننده نقطه بهینه تولید استفاده نمود. هدف این تحقیق، ارزیابی عملکرد شبکههای عصبی مصنوعی در راستای مدلسازی خواص فیزیکی تخته خردهچوب ساختهشده از ساقۀ کلزا بود. مدلسازی و امکان تخمین خصوصیات فیزیکی تخته خردهچوب با استفاده از نسبت ملامین فرمالدئید به اوره فرمالدئید، نسبت ساقۀ کلزا به صنوبر و مقدار رطوبت کیک به روشهای شبکههای عصبی مصنوعی: MLP، RBF و ANFIS بررسی شد. نتایج نشان داد که شبکۀ عصبی MLP نسبت به شبکۀ RBFN و ANFIS عملکرد بهنسبت بهتری در زمینۀ برآورد خصوصیات فیزیکی تخته خردهچوب دارد. همچنین نتایج نشان داد که مدلهای هوش مصنوعی در زمینۀ پیشبینی خصوصیات فیزیکی تخته خردهچوب، دقت و توانایی مناسبی دارند. نتایج آنالیز حساسیت نیز نشان داد که در زمینۀ برآورد TS2 و WA24 مهمترین پارامتر با تأثیر مثبت در روند مدلسازی، مقدار رطوبت کیک است و نسبت ملامین فرمالدئید به اوره فرمالدئید نیز در زمینۀ مدلسازی TS24 و WA2 مؤثرترین پارامتر است. | ||
کلیدواژهها | ||
تخته خردهچوب؛ خواص فیزیکی؛ شبکههای عصبی مصنوعی؛ پرسپترون چند لایه | ||
عنوان مقاله [English] | ||
Modeling the Physical Properties of Particleboard from Canola (Brassica napus) Stalks by Using MLP, RBFN and ANFIS Artificial Neural Network | ||
نویسندگان [English] | ||
Sajad Akbari2؛ Hosein Kermanian3؛ Masoud Hashemi2؛ | ||
چکیده [English] | ||
Different factors influence on the properties of wood composite panels. Evaluating all of these factors not only increases waste of time and energy but also decreases accuracy in estimation of influence value of selected factors in manufacturing panels in order to obtain optimum point of different properties of wood composite panels. Hence, application of a new statistical method is necessary for determination of model estimating production´s optimum point. This study was aimed to evaluate the artificial neural networks performance to model the physical properties of the particleboard made of canola stalks particles. The physical properties of the particleboard were modeled and estimated using different weight ratios of melamine formaldehyde to urea formaldehyde, canola stalks to poplar particles and mat moisture content through MLP, RBFN and ANFIS artificial neural networks. The results showed that MLP neural network has better performance than RBFN and ANFIS neural networks to estimate the physical properties of the particleboard. The results also showed that the artificial intelligence models have a proper precision and ability to predict the particleboard's physical properties. The results of the sensitivity analysis also showed that for estimating and , the most important parameter was mat moisture content with a positive effect on the modeling, and melamine formaldehyde to urea formaldehyde ratio was also the most effective parameter for estimating and . | ||
کلیدواژهها [English] | ||
Particleboard, Physical properties, Artificial Neural Network, MLP | ||
مراجع | ||
[1]. Lin, H.C., and Huang, J.C. (2004). Using Single Image Multi-Processing Analysis Techniques to Estimate the Internal Bond Strength of Particleboard. Taiwan Journal of Forest Science, 19(2): 109-17. [2]. Faridah, S.I., and Nordin, A.B. (2012). Neural Network Modeling for Fiberboard Proper-ties Prediction, Wseas 13th Cimmacs, Latest Advances in Systems Science and Computational Intelligence. pp: 104-108. [3]. Ozsahin, S. (2012). ANN for Modeling MA and TS of OSB. 7(1): 1053-1067. [4]. Fernandez, G., Esteban, F., Palacios L.G., Navarro, P.N., and Conde, M. (2008). Prediction of standard particleboard mechanical properties utilizing an artificial neural network and subsequent comparison with a multivariate regression model. Investigacion Agraria-sistemas Y Recursos Forestales, 17(2): 87-178. [5]. European Standard EN 317. (1993). Particleboards and fiberboards, determination of swelling in thickness after immersion. European Standardization Committee, Brussels. [6]. Smith, M. (1993). Neural networks for statistical modeling: Thomson Learning. [7]. Haykin, S. (1999). Neural networks: A comprehensive foundation. NJ. Prentice-Hall Inc. Englewood Cliffs. [8]. Jorjani, E., Chehreh Chelgani, S., and Mesroghli, S. (2008). Application of artificial neural networks to predict chemical desulfurization of Tabas coal. Fuel, 87(12): 2727-34. [9]. Chung, C.H., Chiang, Y.M., and Chang, F.J. (2012). A spatial neural fuzzy network for estimating pan evaporation at ungauged sites. Hydrology and Earth Systems Science, 16; 255-266. [10]. Kemp, C., Perfors, A., and Tenenbaum, J. (2007). Learning overhypotheses with hierarchical Bayesian models. Developmental Science, 10:307-321. [11]. Jain, S.K., Nayak, P.C., and Sudheer, K.P. (2008). Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation. Hydrological Processes, 22: 2225-2234. [12]. Hill, M.C. (1998). Methods and guidelines for effective model calibration, U.S. Geol. Surv. Water Resources Investigation Report, 90 pp. [13]. Demirkir, C., Ozsahin, S., Aydin. I., and Colakoglu, G. (2013). Optimization of some panel manufacturing parameters for the best bonding strength of plywood. International Journal of Adhesive, 46:14-20. | ||
آمار تعداد مشاهده مقاله: 757 تعداد دریافت فایل اصل مقاله: 567 |