![سامانه نشر مجلات علمی دانشگاه تهران](./data/logo.png)
تعداد نشریات | 162 |
تعداد شمارهها | 6,578 |
تعداد مقالات | 71,072 |
تعداد مشاهده مقاله | 125,698,077 |
تعداد دریافت فایل اصل مقاله | 98,929,822 |
Dual-objective Preemptive Multi-mode Resource-Constrained Project Scheduling Problem Optimization Model | ||
Advances in Industrial Engineering | ||
مقاله 4، دوره 51، شماره 1، تیر 2017، صفحه 29-44 اصل مقاله (1.19 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jieng.2017.61892 | ||
نویسندگان | ||
Hamzeh Amin-Tahmasbi* 1؛ Allahyar Daghbandan2؛ Roya Bagherpour3 | ||
1Department of Industrial Engineering, Faculty of Technology and Engineering, University of Guilan, Iran | ||
2Department of Chemical Engineering, Faculty of Technology and Engineering, University of Guilan, Iran | ||
3Department of Industrial Engineering, Kooshyar Higher Educational Institute, Rasht, Iran | ||
چکیده | ||
The Multi-Mode Resource Constrains Project Scheduling Problem (MRCPSP) tries to find the best sequence of activities in a manner that involves more than one type of operating mode and in the presence of resource constraints, project’s precedence constraints must be satisfied. In each execution mode, the amount of resources and execution time are specified and different. In The Preemptive multi-mode Resource Constraints Project Scheduling Problem (P-MRCPSP), each operating mode activity can be interrupted and restarted at any time without any extra cost. In this paper, minimizing the completion time along with maximizing the current net value of the project in the P-MRCPSP are considered. After solving the problem by using Epsilon limits method, according to NP-hard problem and multi-objective model, multi-objective particle swarm optimization (MOPSO) has been developed to achieve optimum scheduling. In order to evaluate the proposed method’s efficiency, results have been compared to non-dominance genetic algorithm sorting (NSGAII) based on designed indicators. The Taguchi method has been used in experimental design, to adjust these two algorithms’ parameters. The results of the model solution show the strength of MOPSO algorithm. | ||
کلیدواژهها | ||
Cessation of activities؛ meta-heuristic methods؛ Multi-mode execution؛ Multi-objectives particle swarm algorithm؛ Resources-constrained project scheduling | ||
عنوان مقاله [English] | ||
بهینهسازی مدل دوهدفۀ مسئلۀ زمانبندی پروژه با منابع محدود باوجود چند حالت اجرایی و امکان قطع فعالیتها | ||
نویسندگان [English] | ||
حمزه امین طهماسبی1؛ الهیار داغبندان2؛ رویا باقرپور3 | ||
1استادیار گروه مهندسی صنایع دانشکدة فنی و مهندسی شرق، دانشگاه گیلان | ||
2استادیار گروه مهندسی شیمی دانشکدة فنی، دانشگاه گیلان | ||
3دانشجوی کارشناسی ارشد مهندسی صنایع مؤسسۀ آمـوزش عـالی کوشیـار رشـت | ||
چکیده [English] | ||
مسئلة زمانبندی پروژه با منابع محدود با وجود چند حالت اجرایی (MRCPSP) ، بهدنبال یافتن بهترین توالی انجامدادن فعالیتهاست، بهنحویکه با وجود انواع محدودیت منابع، باید محدودیتهای تقدم و تأخر پروژه ارضا شود و فعالیتها نیز بیش از یک نوع حالت اجرایی داشته باشند. در هریک از این حالتهای اجرایی، مقدار منابع و زمان اجرایی فعالیتها مشخص و متفاوت است. در مسئلة زمانبندی پروژه با منابع محدود و چند حالت اجرایی با امکان قطع فعالیتها (P-MRCPSP)، فعالیتها میتوانند در هر حالت اجرایی قطع و در هر زمانی بدون اضافهشدن هزینه دوباره شروع شوند. در این پژوهش کمینهساختن زمان تکمیل پروژه در کنار بیشینهسازی ارزش خالص فعلی پروژه در مسئله P-MRCPSP مدنظر قرار گرفته است. پس از حل مسئله با استفاده از روش محدودیت اپسیلون، با توجه به NP-hard بودن مسئله و چندهدفهبودن مدل، الگوریتم تکاملی چندهدفة بهینهسازی ازدحام ذرات (MOPSO) برای دستیابی به زمانبندی بهینه توسعه داده شده است. بهمنظور ارزیابی کارایی روش پیشنهادی، نتایج براساس شاخصهای طراحیشده با الگوریتم ژنتیک مرتبسازی نامغلوب (NSGAII) مقایسه میشود. برای تنظیم پارامترهای دو الگوریتم از روش تاگوچی در طراحی آزمایشها استفاده شده است. نتایج حل مدل نشاندهندة قوت الگوریتم MOPSO است. | ||
کلیدواژهها [English] | ||
الگوریتم چندهدفه ازدحام ذرات, تعدد حالات اجرایی, روشهای فرا ابتکاری, زمانبندی پروژه با منابع محدود, قطع فعالیت | ||
مراجع | ||
1. Russell, A. H. (1970). “Cash flows in networks”, Management Sci., Vol. 16, No. 5, PP. 357- 373.
2. Grinold, R. C. (1972). “The payment scheduling problem”, Naval Research Logistics Quarterly, Vol. 19, No. 1, PP. 123- 136.
3. Amin-Tahmasbi, H., Tavakkoli-Moghaddam, R. & Iranmansh, H. (2009). “Project planning in presence of resource constraint with immune algorithm”, 5th Int project management Conf., Tehran.
4. Khalili-Damghani, K., Tavakkoli-Moghaddam, R. & Tabari, M. (2011). “Solve of resource-constrained project scheduling problem using modified ant colony algorithm”, J. of Industrial Engineering, Vol. 45, No. 1, PP. 59- 69.
5. Talbot, F. B. (1982). “Resource-constrained project scheduling with time-resource trade-offs: The nonpreemptive case”, Management Sci., Vol. 28, No. 10, PP. 1197– 1210.
6. Al-Fawzan, M. A. & Haouari, M. (2005). “A bi-objective model for robust resource-constrained project scheduling”, Int.J.of Production Economics, Vol. 96, No. 2, PP. 175-187.
7. Peteghem, V. & Vanhoucke, M. (2010). “A genetic algorithm for the preemptive and on reemptive multi-mode resource constrained project-scheduling problem”, European Journal of Operational Research, Vol. 201, No. 2, PP. 409– 418.
8. Seifi, M. & Tavakkoli-Moghaddam, R. (2008). “A new bi-objective model for a multimode resource-constrained project scheduling problem with discounted cash flows and four payments model”, International Journal of Engineering, Transactions A: Basics, Vol. 21, No. 4, PP. 347– 360.
9. Chen, Z. J. & Chyu, C. C. (2010). “A dual-population memetic algorithm for minimizing total cost of multi-mode resource-constrained project scheduling”, Industrial Engineering and Management Systems, Vol. 9, No. 2, PP. 70- 79.
10. Coelho, J. & Vanhoucke, M. (2011). “Multi-mode resource-constrained project scheduling using RCPSP and SAT solvers Original”, European Journal of Operational Research, Vol. 213, No. 1, PP. 73- 82.
11. Azimi, F., Aboutalebi, R. & Najafi, A. A. (2011). “Using multi-objective particle swarm optimization for bi-objective multi-mode resource-constrained project scheduling problem”, World Academy of Science, Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, Vol. 5, No. 6, PP. 1015- 1019.
12. Wang, L. & Fang, Ch. (2012). “An effective estimation of distribution algorithm for the multi-mode resource-constrained project scheduling problem”, Computers & Operations Research, Vol, 39. No. 2, PP. 449- 460.
13. Li, H. & Zhang, H. (2013). “Ant colony optimization-based multi-mode scheduling under renewable and nonrenewable resource constraints”, Automation in Construction, Vol. 35, PP. 431- 438.
14. Hao, X., Lin, L. & Gen, M. (2014). “An effective multi-objective EDA for robust resource constrained project scheduling with uncertain durations”, Procedia Computer Science, Vol. 36, PP. 571- 578.
15. Roghanian, E. (2014). “A Bi-objective pre-emption multi-mode resource constrained project scheduling problem with due dates in the activities”, Journal of Optimization in Industrial Engineering, Vol 7, No. 15, PP. 15- 25
16. Cheng, J., Fowler, J., Kempf, K. & Mason, S. (2015). “Multi-mode resource-constrained project scheduling problems with non-preemptive activity splitting”, Computers & Operations Research, Vol. 53, PP. 275- 287.
17. Shou, Y., Li, Y. & Lai, Ch. (2015). “Hybrid particle swarm optimization for preemptive resource-constrained project scheduling”, Neurocomputing, Vol. 148, PP. 122- 128.
18. Moukrim, A., Quilliot, A. & Toussaint, H. (2015). “An effective branch-and-price algorithm for the preemptive resource constrained project scheduling problem based on minimal Interval Order Enumeration”, European Journal of Operational Research, Vol. 244, No. 2, PP. 360- 368.
19. Farshidi, S. & Ziarati, K. (2016). “A bi- population genetic algorithm with two novel greedy mode selection methods for MRCPSP”, ACSIJ Advances in Computer Science: An International Journal, Vol. 5, No. 22, PP. 66- 77.
20. Asta, Sh. Karapetyan, D. Kheiri, A. Özcan, E. & Parkes, A. J. (2016). “Combining Monte-Carlo and hyper-heuristic methods for the multi-mode resource-constrained multi-project scheduling problem”, Information Sciences, Vol. 373, PP. 476- 498. 21. Elloumi, S., Fortemps, Ph. & Loukilc, T. (2017). “Multi-objective algorithms to multi-mode resource-constrained projects under mode change disruption”, Computers & Industrial Engineering, Vol. 106, PP. 161– 173.
22. Ballestín, F. & Blanco, R. (2011). “Theoretical and practical fundamentals for multi-objective optimization in resource-constrained project scheduling problems”, Computers & Operations Research, Vol. 38, No. 1, PP. 51– 62.
23. Buddhakulsomsiri, J. & Kim, D. S. (2006). “Properties of multi-mode resource-constrained project scheduling problems with resource vacations and activity splitting”, European Journal of Operational Research, Vol. 175, No. 1, PP. 279- 295.
24. Liu, B., Wang, L. & Jin, Y. H. (2008). “An effective hybrid PSO-based algorithm for flow shop scheduling with limited buffers”, Computers & Operations Research, Vol. 35, No. 9, PP. 2791- 2806.
25. Chen, R. M., Wu, C. L., Wang, C. M. and Lo, S. T. (2010). “Using novel particle swarm optimization scheme to solve resource-constrained scheduling problem in PSPLIB”, Expert systems with applications, Vol. 37, No. 3, PP. 1899- 1910.
26. Tavakkoli-Moghaddam, R., Azarkish, M. & Sadeghnejad-Barkousaraie, A. (2011). “Solving a multi-objective job shop-scheduling problem with sequence-dependent setup times by a Pareto archive PSO combined with genetic operators and VNS”, The International Journal of Advanced Manufacturing Technology, Vol. 53, No. 5- 8, PP. 733- 750.
27. Amiri, M., Abtahi, A. R. & Khalili-Damghani, K. (2013). “Solving a generalised precedence multi-objective multi-mode time-cost-quality trade-off project-scheduling problem using a modified NSGA-II algorithm”, International Journal of Services and Operations Management, Vol. 14, No. 3, PP. 355- 372.
28. Coello Coello, C. A., Van Veldhuizen, D. A. & Lamont, G. B. (2002). Evaluationary algorithm for solving multi-objective problems, Kluwer Academic Pub. Co., New York. | ||
آمار تعداد مشاهده مقاله: 1,040 تعداد دریافت فایل اصل مقاله: 808 |