- Archer, E. & Strauss, H. C. (1990). The effect of vine spacing on physiological aspects of Vitis vinifera L. (cv. Pinot noir). South African Journal of Enology and Viticulture, 11, 76-87.
- Badger, M. R., Bjorkman, O. & Armond, P. A. (1982). An analysis of photosynthetic response and adaptation to temperature in higher plants: temperature acclimation in the desert evergreen Nerium oleander L. Plant Cell Environment, 5, 85-99.
- Baniwal, S. K., Bharti, K., Chan, K. Y., Fauth, M., Ganguli, A., Kotak, S., Mishra, S. K., Nover, L., Port, M., Scharf, K.D., et al., (2004).Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. Journal of Biosciences, 29, 471-487.
- Barrs, H. D. & Weatherly, P. E. (1962). A re-examination of the relative turgidity technique for estimating water deficit in leaves. Agriculture Journal of Biological Science, 15, 413-428.
- Berry, J. & Bjorkman, O. (1980). Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology, 31, 491-543.
- Bindi, M., Fibbi, L., Gozzini, B., Orlandini, S. & Miglietta, F. (1996). Modelling the impact of future climate scenarios on yield and yield variability of grapevine. Climate Research, 7, 213-224.
- Chang, H. C., Tang, Y. C., Hayer-Hartl, M. & Hartl, F. U. S. (2007). Molecular chaperones, Part I. Cell 8, doi:10.1016/j.cell.2007.01.001.
- Chinnusamy, V., Zhu, J., Zhou, T. & Zhu, J. K. (2007). Small RNAs: big role in abiotic stress tolerance of plants. In Advances in Molecular Breeding toward Drought and Salt Tolerant Crops (pp. 223-260). Springer Netherlands.
- Correia, M. J., Chaves, M. M. C. & Pereira, J. S. (1990). Afternoon depression in photosynthesis in grapevine leaves: evidence for a high light stress effect. Journal of Experimental Botany, 41, 417-426.
- Downton, W. J. S., Grant, W. J. R. & Loveys, B. R. (1987). Diurnal changes in the photosynthesis of field-grown grapevines. New Phytologist, 105, 71-80.
- Dillaway, D. N. & Kruger, E. L. (2010). Thermal acclimation of photosynthesis a comparison of boreal and temperate tree species along a latitudinal transect. Plant, Cell and Environment,33, 888-899.
- Esteves, M. A. & Orgaz, M. D. M. (2001). The influence of climatic variability on the quality of wine. International Journal of Biometeorology, 45, 13-21.
- Faria, T., Wilkins, D., Besford, R. T., Vaz, M., Pereira, J. S. & Chaves, M. M. (1996). Growth at elevated CO2 leads to down-regulation of photosynthesis and altered response to high temperature in Quercus suber L. seedlings. Journal of Experimental Botany,47, 1755-1761.
- Ferrar, P. J., Slatyer, R. O. & Vranjic J. A. (1989). Photosynthetic temperature acclimation in Eucalyptus species from diverse habitats, and a comparison with Nerium oleander. Australian Journal of Plant Physiology,16, 199-217.
- Ferrini, F, Mattii, G. B. & Nicese, F. P. (1995). Effect of temperature on key physiological responses of grapevine leaf. American Society for Enology and Viticulture, 46, 375-379.
- Franks, P. J., Adams, M. A., Amthor, J. S., Barbour, M. M., Berry, J. A., Ellsworth, D. S., et al., (2013). Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century. New Phytologys, 197, 1077-1094.
- Gamon, J. A. & Pearcy, R. W. (1990). Photoinhibition in Vitis californica. The role of temperature during highlight treatment. Plant Physiology, 92, 487-494.
- Greer D. H. & Weston C. (2010). Heat stress affects flowering, berry growth, sugar accumulation and photosynthesis of Vitis vinifera cv. Semillon grapevines grown in a controlled environment. Functional Plant Biology, 37, 206-214.
- Greer, D. H. & Weedon, M. M. (2012). Modelling photosynthetic responses to temperature of grapevine (Vitis vinifera cv. Semillon) leaves on vines grown in a hot climate. Plant, Cell and Environment, 35, 1050-1064.
- Grifoni, D. Mancini, M., Maracchi, G., Orlandini, S. & Zipoli, G. (2006) Analysis of Italian wine quality using freely available meteorological information. American Society for Enology and Viticulture, 57, 339-346
- Haldimann, P. & Feller, U. (2004). Inhibition of photosynthesis by high temperature in oak (Quercus pubescens L.) leaves grown under natural conditions closely correlates with reversible heatdependent reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant, Cell and Environment, 27, 1169-1183.
- Haldimann, P. & Feller, U. (2005). Growth at moderately elevated temperature alters the physiological response of the photosynthetic apparatus to heat stress in pea (Pisum sativum L.) leaves.Plant, Cell and Environment,28, 302-317.
- Hasanuzzaman, M., Hossain, M. A. & Fujita, M. (2010). Physiological and biochemical mechanisms of nitric oxide induced abiotic stress tolerance in plants. American Journal of Plant Physiology, 5, 295-324.
- Hiscox, J. D. & Israelstam, G. F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57, 1332-1334.
- Hüve, K., Bichele, I., Rasulov, B. & Ninemets, U. (2011). When is it too hot for photosynthesis: heat induced instability of photosynthesis in relation to respiratory burst, cell permeability changes and H2O2 formation. Plant, Cell and Environment,34, 113-126.
- Janska, A., Marsik, P., Zelenkova, S. & Ovesna, J. (2010). Cold stress and acclimation: What is important for metabolic adjustment? Plant Biology, 12, 395-405.
- Jones, G. V. & Davis, R. E. (2000). Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. American Society for Enology and Viticulture, 51, 249-261
- Jones, G. V. (2006). Climate and terroir: impacts of climate variability and change on wine. In: Macqueen R. W., Meinert, L. D. (eds.) Fine wine and terroir. The geoscience perspective. Geosci Can Repr Ser 9. Geological Association of Canada, St. John’s Newfoundland, 247 pages.
- Juárez-Lopez, F. J., Escudero, A. & Mediavilla, S. (2008). Ontogenetic changes in stomatal and biochemical limitations to photosynthesis of two co-occurring Mediterranean oaks differing in leaf life span. Tree Physiology,28, 367-374.
- Kadir, S. (2006). Thermostability of photosynthesis of Vitus aestivalis and Vitis vinifera. Journal of the American Society for Horticultural Science, 131, 476-483.
- Karabourniotis, G., Bournman, J. F. & Nikolopoulos, D. (2000). A possible optical role of the bundle sheath extensions of the heterobaric leaves of Vitis vinifera and Quercus coccifera. Plant, Cell and Environment,23, 423-430.
- Keller, M. (2010). The science of grapevine: anatomy and physiology. Published by Elsevier Inc. UK. 377 Pages.
- Krasensky, J. & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany. doi:10.1093/jxb/err460.
- Kriedemann, P. E., Kliewer, W. M. & Harris, J. M. (1970). Leaf age and photosynthesis in Vitis vinifera L. Vitis, 9, 97-104.
- Kriedemann, P. E. (1968). Photosynthesis in vine leaves as a function of light intensity, temperature and leaf age. Vitis, 7, 213-220.
- Luo, H. B., ling, M., Xi, H.F., Duan, W., Li, S. H., Loescher, W. & Wang, J. F. (2011). Photosynthetic responses to heat treatments at different temperatures and following recovery in grapevine (Vitis amurensis L.) leaves. PLos ONE 6, 23033.
- Liu, W. T., Pool, R., Wenkert, W. & Kriedemann, P. E. (1978). Changes in photosynthesis, stomatal resistance and abscisic acid of Vitis labrusca through drought and irrigation cycles. American Journal of Enology and Viticulture, 29, 239-246
- Magalhaes N. P. (2008). Tratado de viticulture-a videira, a vinha e o ‘terroir’. Chaves Ferreira Publicações, Lisboa, 608 pages.
- Marchand, F. L., Mertens, S., Kockelbergh, F., Beyens, L. & Nijs, I. (2005). Performance of high arctic tundra plants improved during but deteriorated after exposure to a simulated extreme temperature event. Global Change Biology, 11, 2078-2089.
- Moffatt, J. M., Sears, R. G. & Paulsen, G. (1990). Wheat high temperature tolerance during reproductive growth. I. Evaluation by chlorophyll fluorescence. Crop Science, 30, 881-885.
- Morales, D., Rodriguez, P., Dellamico, J., Nicolas, E., Torrecillas, A. & Sanchez-Blanco, M. J. (2003). High-temperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Biolologia Plantarum, 47, 203-208.
- Moreno, A. A. & Orellana, A. (2011). The physiological role of the unfolded protein response in plants. Biological Research, 44, 75-80.
- Nagarajan, S. & Bansal, K. C. (1986). Measurement of cellular membrane thermostability to evaluate foliage heat tolerance of potato. Potato Research, 29, 163-167.
- Orlandini, S., Stefano, V., Lucchesini, P., Puglisi, A. & Bartolini, G. (2009). Current trends of agroclimatic indices applied to grapevine in Tuscany (Central Italy). Quarterly Journal of the Hungarian Meteorological Service, 113, 69-78.
- Prášil, I. & Zámečnιk, J. (1998). The use of a conductivity measurement method for assessing freezing injury I. Influence of leakage time, segment number, size and shape in a sample on evaluation of the degree of injury. Environmental and Experimental Botany, 40, 1-10.
- Pressman, E., Peet, M. M. & Pharr, D. M. (2002). The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in developing anthers. Annals of Botany, 90, 631-636.
- Rodo, X. & Comin, F. A. (2000). Links between large-scale anomalies, rainfall and wine quality in the Iberian Peninsula during the last three decades. Global Change Biology, 6, 267-273.
- Roper, T. R. & Williams, L. E. (1989). Net CO2 assimilation and carbohydrate partitioning of grapevine leaves in response to trunk girdling and gibberellic acid application. Plant Physiology, 89, 1136-1140.
- Salvucci, M. E. & Crafts-Brandner, S. J. (2004). Inhibition of photosynthesis by heat stress: The activation state of Rubisco as a limiting factor in photosynthesis. Physiologia Plantarum, 120, 179-186.
- Santos, J. A., Malheiro, A. C., Karremann, M. K. & Pinto, J. G. (2011). Statistical modelling of grapevine yield in the Port Wine region under present and future climate conditions. International Journal of Biometeorology, 55, 119-131.
- Sayed, O. H., Emes, M. J., Earnshaw, M. J. & Butler, R. D. (1989). Photosynthetic responses of different varieties of wheat to high temperature. Journal of Experimental Botany, 40, 625-631.
- Semenov, M. A. & Halford, N. G. (2009). Identifying target traits and molecular mechanisms for wheat breeding under a changing climate. Journal of Experimental Botany, 60, 2791-2804.
- Sepùlveda, G. & Kliewer, W. M. (1986). Stomatal response of three grapevine cultivars (Vitis vinifera L.) to high temperature. American Society for Enology and Viticulture, 37, 44-52.
- Shinozaki, K. & Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58, 221-227.
- Shoaf, T. W. & Lium, B. W. (1976). Improved extraction of chlorophyll a and b from algae using di methyl sulfoxide-limnol. Oceanography, 21, 926-928.
- Slatyer, R. O. (1977). Altitudinal variation in the photosynthetic characteristics of Snow Gum, Eucalyptus pauciflora Sieb. Ex Spreng. IV. Temperature response of four populations grown at different temperatures.Australian Journal of Plant Physiology, 4, 583-594.
- Sousa-Majer, M. J., Turner, N. C., Hardie, D. C., Morton, R. L., Lamont, B. & Higgins, T. J. V. (2004). Response to water deficit and high temperature of transgenic peas (Pisum sativum L.) containing a seed-specific a-amylase inhibitor and the subsequent effects on pea weevil (Bruchus pisorum L.) survival. Journal of Experimental Botany, 55, 497-505.
- Srinivasan, A., Takeda, H. & Senboku, T. (1996). Heat tolerance in food legumes as evaluated by cell membrane thermostability and chlorophyll fluorescence techniques. Euphytica, 88, 35-45
- Stafne, E. T., Clark, J. R. & Rom, C. R. (2001). Leaf gas exchange response of 'Arapaho' blackberry and six red raspberry cultivars to moderate and high temperatures. HortScience, 36, 880-883.
- Tsukaya, H. (2006). Mechanism of leaf-shape determination. Annual Review of Plant Physiology, 57, 477-496.
- van Leeuwen, C., Friant, P., Choné, X., Tregoat, O., Koundouras, S. & Dubourdieu, D. (2004). Influence of climate, soil, and cultivar on terroir. American Society for Enology and Viticulture, 55, 207-217.
- Valliyodan, B. & Nguyen, H. T. (2006). Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr. Opin. Plant Biology, 9, 189-195.
- Vara Prasad, P. V., Craufurd, P. Q., Summerfield, R. J. & Wheeler, T. R. (2000). Effects of short episodes of heat stress on flower production and fruit-set of groundnut (Arachis hypogaea L.). Journal of Experimental Botany,51, 777-784.
- Vogel, S. (2009). Leaves in the lowest and highest winds: temperature, force and shape. New Phytologist, 183, 13-26.
- Wahid, A., Gelani, S., Ashraf, M. & Foolad, M. R. (2007). Heat tolerance in plants: an overview. Environmental and Experimental Botany, 6, 199-223.
- Wang, J. Z., Cui, L. J., Wang, Y. & Li, J. L. (2009). Growth, lipid peroxidation and photosynthesis in two tall fescue cultivars differing in heat tolerance. Biologia Plantarum, 53, 247-242.
- Wise, P. R., Olson, A. J., Schrader, S. M. & Sharkey, T. D. (2004). Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant, Cell and Environment,27, 717-724.
- Xu, L. & Baldocchi, D. D. (2003). Seasonal trends in photosynthetic parameters and stomatal conductance in blue oak (Quercus douglasii) under prolonged drought and high temperature. Tree Physiology,23, 865-877.
- Yamori, W., Noguchi, K. & Terashima, I. (2005). Temperature acclimation of photosynthesis in spinach leaves: analysis of photosynthetic components and temperature dependencies of photosynthetic partial reactions. Plant, Cell and Environment,25, 536-547.
- Zsofi, Z., Varadi, G., Balo, B., Marschall, M., Nagy, Z. & Dulai, S. (2009). Heat acclimation of grapevine leaf photosynthesis: mezo- and macroclimatic aspects. Functional Plant Biology, 36, 310-322.
|