تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,118,371 |
تعداد دریافت فایل اصل مقاله | 97,224,396 |
تهیۀ نقشۀ حساسیت به وقوع زمین لغزش با استفاده از مدلهای وزن شواهد (WofE)، نسبت فراوانی (FR) و دمپستر– شیفر (DSH) (مطالعۀ موردی: محدودۀ ساری-کیاسر) | ||
نشریه علمی - پژوهشی مرتع و آبخیزداری | ||
مقاله 15، دوره 70، شماره 3، آذر 1396، صفحه 735-750 اصل مقاله (1.25 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jrwm.2017.203370.989 | ||
نویسندگان | ||
مهوش غلامی* 1؛ کریم سلیمانی2؛ اسماعیل نکویی قاچکانلو3 | ||
1کارشناس ارشد آبخیزداری، دانشکدۀ منابعطبیعی، دانشگاه علوم کشاورزی و منابعطبیعی ساری | ||
2استاد گروه آبخیزداری، دانشکدۀ منابعطبیعی، دانشگاه علوم کشاورزی و منابعطبیعی ساری | ||
3کارشناس ارشد هیدروژئولوژی، دانشکدۀ علوم پایه، دانشگاه شیراز | ||
چکیده | ||
زمین لغزش به عنوان یکی از مخاطرات طبیعی مهم هر ساله موجب خسارات مالی، جانی و تخریب منابعطبیعی میشود. هدف این تحقیق مقایسۀ سه مدل وزن شواهد، نسبت فراوانی و دمپستر-شیفر در حوضۀ آبخیز ساری-کیاسر است. در ابتدا، دادههای 105 زمین لغزش رخ داده در منطقه بر اساس عکسهای هوایی 1:25000 و مطالعات میدانی جمعآوری گردیده و این فهرست به دو قسمت 75 درصد برای پهنهبندی و 25 درصد برای اعتبارسنجی تقسیم شد. سپس، 17 پارامتر مؤثر در زمین لغزش شامل فاکتورهای زمین شناسی، ژئومورفولوژیکی، هیدرولوژیکی و انسانزاد فراهم گردید. مهم ترین فاکتورها در رخداد زمین لغزش در منطقۀ بارش، شیب و پوشش گیاهی هستند. نتایج اعتبارسنجی به صورت درصد مساحت زیر منحنی تجمعی (AUC)نشان میدهد که نرخ موفقیت مدلهای وزن شواهد و نسبت فراوانی و دمپستر-شیفر به ترتیب 05/92 و05/92 و 31/91 درصد و نرخ پیشبینی به ترتیب 72/92 و 73/92 و 44/85 درصد است. نتایج نشان میدهد که از نظر دقت مدل بهکار رفته براساس نرخ موفقیت سه مدل در گروه عالی (9/ - 1) قرار میگیرند. همچنین نرخ موفقیت بر اساس نرخ پیشبینی مدلهای وزن شواهد و نسبت فراوانی در گروه عالی (9/ - 1) و مدل دمپستر-شیفر در گروه خوب (8/0-9/0) قرار میگیرند. نتایج بهدست آمده بیانگر این است که مدلهای وزن شواهد و نسبت فراوانی مدلهای کارامدتری نسبت به مدل دمپستر-شیفر در منطقه هستند | ||
کلیدواژهها | ||
پهنهبندی خطر زمین لغزش؛ روش وزن شواهد؛ نسبت فراوانی؛ دمپستر-شیفر؛ محدودۀ ساری-کیاسر | ||
عنوان مقاله [English] | ||
Landslide susceptibility mapping by use of Weight of Evidence (WofE) and Frequency Ratio (FR) and Dempster-Shafer (DSH) models: A case study of Sari-Kiasar region, Northern Iran | ||
نویسندگان [English] | ||
mahvash gholami1؛ karim soleymani2؛ esmaeil nekoee3 | ||
1u | ||
2u | ||
3u | ||
چکیده [English] | ||
Landslide is one of the major natural hazards caused financial losses, in lives and destruction of natural resources each year. The aim of this study was comparisons of three models, namely WofE, FR and DSH to the determination of the landslide prone areas in Sari-Kiasar watershed. In the first, 105 landslides occurred in the study area were collected based on aerial photographs in the 1:25,000 scale and field studies divided into two group haphazardly to generate training 75% and testing 25% dataset. Then, 17 landslide conditioning factors including geological, geomorphological, hydrological and anthropogenic were prepared to spatial relationship with landslide occurrence in the study area. The most important factors in the occurrence of landslides in the study area were rainfall followed by slope and vegetation. The validation results as a percentage of the cumulative area under the curve (AUC) showed that the success rate of WofE, FR and DSH models are 92.05, 92.05 and 91.31 percent respectively and the prediction rate are 92.72, 92.73 and 85.44 percent respectively. The results show that in terms of the accuracy of the model used to base on success rate, three models are placed in excellent group (0.9 to 1), also in terms of the accuracy of the model used to base on prediction rate, WofE, FR models are placed in excellent group (0.9 to 1) and DSH is placed in good group (0.8 to 0.9). The results showed that the WofE and FR model have a higher prediction accuracy than of DSH model. | ||
کلیدواژهها [English] | ||
Landslide hazard zonation, Weight of evidence, frequency ratio, Dempster-Shafer, sari-Kiasar region | ||
مراجع | ||
[1] Andarz, Z. (2009). Check the status of landslide in the forest road (Case Study: Emre Series 1 Wood and paper industries company, Mazandaran, Iran), Third International Conference on crisis integrated management in unexpected disasters, Tehran, Promote Quality Company. COI: INDM03_006. [2] Azimpour moghaddam, V. and Vahabzadeh, GH. (2015). Landslide hazard zonation using Dempster- Shaffer method (Case study: Part of the babolrood watershed), The third National Conference on Environment and Agricultural Research Iran, Hamedan, Permanent Secretariat of the Conference, Faculty of Mofateh martyr. COI: NCER03_151 [3]. Aleotti, P. and Chowdhury, R. (1999). Landslide hazard assessment: summary review and new perspectives. Eng. Geol. 58:21–44. [4]. Alexander, D. E. (1995). A survey of the field of natural hazards and disaster studies. Springer. [5]. Ayalew, L. and Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakud-Yahiko Mountains, Central Japon. Geomorphology 65:15–31. [6]. Binaghi, E. Luzi, L. Madella, P. Pergalani, F. and Rampini, A. (1998). Slope instability zonation: a comparison between certainty factor and fuzzy Dempster-Shafer approaches. Nat. Hazards 17(1):77–97. [7]. Baeza, C. and Corominas, J. (2001). Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth surf. Proc. Land 26:1251–1263. [8]. Crosby, D. A. (2006). The effect of DEM resolution on the computation of hydrologically significant topographic attributes. M.S. Thesis Arts, Department of Geography, College of Arts and Sciences, University of South Florida. [9]. Devkota, C. K. Regmi, D. A. Pourghasemi, R. H. Yohida, K. Pradham, B. Ryu, C. L. Dhital, R. M. and Althuwaynee, F. O. (2012). Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Nat. Hazards. [10]. Farahani, A. (2002). Natural slopes instability hazard assessment in Rudbar area by using fazzy logic, M.Sc thesis, Factualy of science geology, Tarbiat Moallem University. [11]. Glade, T. (1998). Establishing the frequency and magnitude of landslide-triggering rainstorm events in New Zealand. Env. Geo. 35(2)160–174.) [12]. Guzzetti, F. Carrara, A. Cardinali, M. and Reichenbach, P. (1999). Landslide hazard evalution: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216. [13] Hosseini, r. and hojjati, m. (2010). The consequences of mass movement and landslide in woodland road in Mazandaran province. Seventh National Conference on watershed management science and engineering. [14]. Lee, S. (2004). Application of likelihood ratio and logestic regression models to landslide susceptibility mapping using GIS. Environ. Manag. 34:223–232. [15]. Lee, S. and Pradham, B. (2007). Landslide hazard mapping at Selangor Malaysia using frequency ratio and logestic regression models. Landslides 4:33–41. [16] Lutfi, R., Hosseini, GH., Lotfalian, m. and Klarstaqy, GH. (2007). the study of the phenomenon of landslide around the forest roads based on participation in the production of sediment (Case study: Pahneh Kolla wood and paper industries, Tajan, Mazandaran, Iran), Fourth National Conference on of Iran's watershed management science and engineering Karaj, Tehran University Faculty of Natural Resources. [17]. Moore, I. D. Grayson, R. B. and Ladson, A.R. (1991). Digital terrain modeling: a review of hydrological, geomorphological, and biological applications. Hydrol Process vol. 5, pp: 3–30. [18]. Pourghasemi, H. R. Moradi, H. R. and Fatemi Aghda, S. M. (2013). Landslide susceptibility mapping by binary logistic regression, Analytical hierarchy process, and statistical index models and assessment of their performances. Nat. Hazards. [19]. Pradham, B. (2010). Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. J. Indian Soc. Remote Senns. 38:301–320. [20] Rosenfeld, C. L. (1994). The geomorphological dimensions of natural disasters. Geomorphology 10(1):27–36. [21]. Schuster, R. L. and Fleming, R. W. (1986). Economic losses and fatalities due to landslides. National Emergency Training Center. [22]. Soeters, R. and Van Westen, C. J. (1996). Landslides: Investigation and mitigation. Chapter 8-slope instability recognition, analysis, and zonation. Transportation Research Board Special Report (247). [23]. Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Sciences 240(4857):1285–1293. [24] Solaimani, k., Gholami, M. (2014). Land slide occurrence sensitivity maps with the use of the frequency ratio and Gamma Fuzzy models in the South Caspian (Case study: road sari-Kiasar), National Conference on sustainable development space on the banks of the Caspian Sea, Mazandaran, University of Mazandaran, Faculty of Humanities and social sciences. COI: SSDCSC01_051 [25]. Van Westen, C. J. (1997). Statistical landslide hazard analysis. In: Application guide, ILWIS 2.1 for Windows. ITC, Enscheda, The Netherlands, pp. 73–84. [26] Vakhshuri, S. (2013). Evaluate the potential landslide in geographic information system (A case study of Gorgan drainage basin). Master's Thesis Geology, Faculty of Science, University of Shiraz. | ||
آمار تعداد مشاهده مقاله: 525 تعداد دریافت فایل اصل مقاله: 357 |