تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,122,726 |
تعداد دریافت فایل اصل مقاله | 97,230,885 |
پیش بینی وضعیت منابع آب تحت اثر تغییرات اقلیم به کمک مدل ANFIS و سناریوهای گردش عمومی جوّ (مطالعۀ موردی:حوضۀ زیارت شهر گرگان) | ||
اکوهیدرولوژی | ||
مقاله 15، دوره 5، شماره 1، فروردین 1397، صفحه 173-187 اصل مقاله (1.1 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ije.2017.241377.720 | ||
نویسندگان | ||
سید حامد شکیب1؛ سعید فرزین* 2 | ||
1مربی، گروه مهندسی عمران دانشگاه بزرگمهر قائنات | ||
2استادیار، گروه مهندسی آب و سازه های هیدرولیکی، دانشکدۀ مهندسی عمران، دانشگاه سمنان | ||
چکیده | ||
وضعیت آتی منابع آب متأثر از تغییرات اقلیم در هر منطقه است و شبیهسازی بارش-رواناب برای دورههای آینده سهم مهمی در مدیریت منابع آب خواهد داشت. تغییر اقلیم میتواند توسط مدل گردش عمومی جوّ و سناریوهای مختلف اقلیمی شبیهسازی شود. در این تحقیق، اثر تغییرات اقلیم بر رواناب، بارش، دما و منابع آب منطقۀ زیارت استان گلستان بررسی شد. از مدل گردش عمومی جوّ HadCM3 تحت سناریوهای اقلیمی A1B، A2 و B1 برای سه دورۀ آتی 2011 تا 2030، 2046 تا 2065 و 2080 تا 2099 استفاده شد. برای ریزمقیاسنمایی خروجیهای مدل HadCM3، مدل ANFIS بهکار برده شد. نتایج آزمون t در سطح اعتماد 95 درصد نشان داد هیچ اختلاف معناداری بین نتایج مشاهدهای و شبیهسازیشده وجود ندارد. مقادیر پیشبینیشده بیانکنندۀ افزایش دما به مقدار 32/0 تا 77/1 درجۀ سانتیگراد است و کاهش میزان بارندگی نیز برای دورههای آتی به میزان 60/1 تا 46/31 میلیمتر خواهد بود. در ادامه، دادههای بهدستآمده به همراه نقشۀ شمارۀ منحنی (CN) و خصوصیات فیزیوگرافی زیرحوضه، بهدستآمده از نرمافزار ArcGIS، به عنوان ورودی به مدل HEC-HMS وارد شد تا دبی در دورههای اقلیمی آینده شبیهسازی شود. نتایج نشان میدهد در هر سه سناریوی افقهای 2020، 2055 و 2090، دبی پیک و حجم سیلاب کاهش یافته است و در هر سه افق یادشده، بیشترین کاهش مربوط به سناریوی A2 است. درصد کاهش دبی پیک و حجم تخلیه برای هر سناریو بهترتیب 72/1 و 83/1، 06/3 و 07/3، 43/4 و 48/4 برای دورههای آتی بهدست آمد. نتایج اجرای مدل، بیان میکند که آبگیری مناسبی در پشت مخازن صورت نمیگیرد. در نهایت، برای حل این مسئله راهکارهایی ارائه شد. | ||
کلیدواژهها | ||
بارش-رواناب؛ تغییر اقلیم؛ حوضۀ زیارت؛ Hadcm3؛ ANFIS؛ HEC-HMS | ||
عنوان مقاله [English] | ||
Prediction of water resource status affected by climate change by ANFIS model and General Circulation Model (case study: Ziarat basin of Gorgan) | ||
نویسندگان [English] | ||
Seyed Hamed Shakib1؛ Saeed Farzin2 | ||
1Msc, Faculty of Civil Engineering, Bozorgmehr University of Qaenat, Qaen, Iran | ||
چکیده [English] | ||
In this research, the effect of climate change on rainfall, runoff, temperature and water resource for Ziarat basin of Golestan province, was assessed. General ccirculation model, HadCM3, was used under three scenarios as A1B, A2 and B1 for 3 future time duration as 2011-2030, 2046-2065 and 2080-2099, respectively. In order to down scaling of HadCM3 output, ANFIS model was used. The predicted results showed increasing temperature as 0.32-1.77oC and decreasing precipitation as 1.6-31.46 mm for future durations. Then, the mentioned results, curve number map and physiographic parameters, basin and waterway slope, gained from Arc-GIS, as importing data to calibrated HEC-HMS model was made in order to simulate the discharge of climate future durations. Results presented the runoff volume and peak of discharge have decreased in all three scenarios for horizon 2020, 2055 and 2090 and for all mentioned horizons, the most of decreasing was related to A2 scenario. Percentage decrease in peak and discharge volume was obtained 1.72 and 1.83, 3.06 and 3.07, 4.43 and 4.48 for mentioned periods, respectively. Consequently, based on extracting information from models, no enough storage would happen in dams. Finally, some solution for this problem was presented. | ||
کلیدواژهها [English] | ||
climate change, Rainfall-runoff, Hadcm3, ANFIS, HEC-HMS | ||
مراجع | ||
Tirgar Fakheri F, Alijani B, Zeaiean Firuzabadi P. Akbari M. Simulation of Snowmelt Runoff Under Climate Change Scenarios in Armand Basin. Iranian Journal of Ecohydrology. 2017; 4(2): 357-368. [In Persian] [2]. Dehghani N, Ghasemieh H, Sadatinejad, S. Ghorbani, K. Evaluating the impact of climate change on runoff using hydrological model (Case study: Bazoft-Samsami Watershed). Iranian Journal of Ecohydrology. 2017; 4(1): 89-102. [In Persian] [3]. IPCC. Climate change. Contribution of Working Group II to the third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. 2007. [4]. Hashemin nasab F, Mousavi baygi M, Bakhtiari B, Davari K. Prediction the Rainfall Changes with Downscaling LARS-WG and HadCM3 models in Kerman during the next 20 years (2030-2011). The Iranian Society of Irrigation & Water Engineering. 2013; 3(12): 43-58. [In Persian] [5]. Neshat A, Sajadi Bami Y. The prediction of the climate change effect on the temperature parameter by the General Circulation Models HadCM3: a case study of Kerman and Bam. Water Engineering. 2017; 9(30): 51-62. [In Persian] [6]. Rezaee M, Nahtaj M, Moghadamniya A, Abkar A, Rezaee M. Comparison of Artificial Neural Network and SDSM Methods in the Downscaling of Annual Rainfall in the HadCM3 Modelling (Case study: Kerman, Ravar and Rabor). Water Engineering. 2015; 8(24): 25-40. [In Persian] [7]. Farzin, S, Karami H, Doostmohammadi M, Ghanbari A, Zamiri E. The performance of Artificial Neural Network in prediction and analysis of hydrological processes (Case study: Water shortage in Nazloo-chai watershed, West Azerbaijan province). Iranian journal of Ecohydrology. 2017; 3(4): 631-644. [In Persian] [8]. Mollaie A. Determination of curve number for estimating of rang of volume by GIS. 6 th International River Engineering Conference, Ahvaz. 2002; 1139-1144. [In Persian] [9]. Garmei R, Faridhosseini A. Optimization Parameters of Rainfall-Runoff Model of HEC-HMS through PSO Algorithm. Iranian Journal of Soil and Water Research. 2015; 46(2): 255-264. [In Persian] [10]. Khoshravesh M, Raeni M, Nikzad-Tehrani E, Koulaian A. The impacts of Urbanization and impervious surfaces on runoff of sardaabrud basin, kalardasht, using HEC-HMS rainfall-runoff model. Iranian Journal of Irrigation and Drainage. 2015; 1(9): 209-220. [In Persian] [11]. Halid H, Ridd P. Modeling inter-annual variation of a local rainfall data using a fuzzy logic technique. Proceedings of the International Forum on Climate Prediction. James Cook University,Australia. 2002; 166–170. [12]. Maria C, Haroldo F, Ferreira. Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region. Journal of Hydrology. 2005; 301: 146–162. [13]. Chen YN, Li WH, Xu CC, Hao XM. Effects of climate change on water resources in Tarim River Basin, Northwest China. Journal of Environmental Sciences. 2007; 19(4):488-93. [14]. Tolika K, Anagnostopoulou C, Maheras P, Vafiadis M. Simulation of future changes in extreme rainfall and temperature conditions over the Greek area: a comparison of two statistical downscaling approaches. Global and Planetary Change. 2008; 63(2):132-151.
[15]. Koutroulis AG, Tsanis IK, Daliakopoulos IN, Jacob D. Impact of climate change on water resources status: A case study for Crete Island, Greece. Journal of hydrology. 2013; 479 :146-158.
[16]. Nepal S. Impacts of climate change on the hydrological regime of the Koshi river basin in the Himalayan region. Journal of Hydro-environment Research. 2016; 10: 76-89.
[17]. Inouye AM, Lach DH, Stevenson JR, Bolte JP, Koch J. Participatory Modeling to Assess Climate Impacts on Water Resources in the Big Wood Basin, Idaho. Springer International Publishing. 2017.p. 289-306.
[18]. Seiller G, Roy R, Anctil F. Influence of three common calibration metrics on the diagnosis of climate change impacts on water resources. Journal of Hydrology. 2017; 547: 280-95.
[19]. Mohammadi M., Karami H., Farzin S, Farokhi A. Prediction of Monthly Precipitation Based on Large-scale Climate Signals Using Intelligent Models and Multiple Linear Regression (Case Study: Semnan Synoptic Station). Iranian journal of Ecohydrology. 2017; 4(1): 201-214. [In Persian]
[20]. Massah Bavani A, Morid S. Impacts of Climate Change on Water Resources and Food Production: A Case Study of Zayandeh - Rud Basin, Esfahan, Iran. Iran Water Resources Research. 2005; 1(1): 40-47. [In Persian]
[21]. Azaranfar A, Abrishamchi A. Assessment of the impact of climate change on precipitation and temperature in the Zayandeh Roud river basin by using the general rotation model outputs. Second Conference on water resource management, Isfahan University of technology. 2006. [In Persian]
[22]. Modirian R, Babaeian I, Karimian M. The Optimum Configuration of RegCM3 Model for Simulation of Precipitation and Temperature at Autumn Seasonal over Khorasan Region in 1991-2000. Physical Geography Researches Journal. 2010; 41(70): 107-120. [In Persian]
[23]. Massah Bavani A, Morid S. Impact of Climate Change on the Water Resources of Zayandeh Rud Basin. Journal of Water and Soil Science. 2013; 9(4): 17-28. [In Persian]
[24]. Javidan N, Bahremand A. Sensitivity Test of Parameters Influencing Flood Hydrograph Routing with a Diffusion-Wave Distributed using Distributed Hydrological Model, Wet Spa, in Ziarat Watershed. Journal of Water and Soil. 2016; 30(3): 685-697. [In Persian]
[25]. Soltani J, Moghaddamnia A, Piri J, Mirmoradzehi J. Performance Comparison of Integrated Models of NN-ARX and ANFIS with GA-GT to Daily Pan Evaporation Estimation Under Arid and Hot Climate of Baluchistan. Journal of Water and Soil. 2013; 27(2): 381-393. [In Persian]
[26]. Ashofteh PS, Bozorg-Haddad O, Loáiciga HA. Development of adaptive strategies for irrigation water demand management under climate change. Journal of Irrigation and Drainage Engineering. 2017;143(2): 04016077.
[27]. Khajeh S, Paimozd S, Moghaddasi M. Assessing the Impact of Climate Changes on Hydrological Drought Based on Reservoir Performance Indices (Case Study: ZayandehRud River Basin, Iran). Water Resources Management. 2017; 11: 1-6.
[28]. Salehpour JA, Mohseni SM, Bazrafshan J, Khalighi S. Investigation of Climate Change Effect on Drought Characteristics in the Future Period using the HadCM3 model (Case Study: Northwest of Iran). Journal of Range and Watershed Management. 2015; 537-548.
[29]. Mohammadi M, Karami H, Farzin S, Farokhi A. Prediction of Monthly Precipitation Based on Large-scale Climate Signals Using Intelligent Models and Multiple Linear Regression (Case Study: Semnan Synoptic Station). Iranian journal of Ecohydrology. 2017; 4(1): 201-214. [In Persian]
[30]. Momeni M, Rezaee N. Aras Dam Reservoir Operation Model by Using of Dynamic Programming. Journal of Industrial Management. 2008; 1(1): 139-152. [In Persian]
[31]. Farshadmehr M, Moghaddas M, Meftahe Halaghi M. Linking Drought Monitoring Systems to Management Measures for Zarrinehrood Dam Operation (Case Study: Zarrinehrood Basin). Iranian Journal of Soil and Water Research. 2015; 46(3): 423-430. [In Persian]
[32]. Emadi A, Khademi M. Reservoir Operation Rule Curve of Doroodzan Dam using Yield Model. Journal of Water and Soil. 2012; 25(5): 1058-1068. [In Persian] | ||
آمار تعداد مشاهده مقاله: 664 تعداد دریافت فایل اصل مقاله: 558 |